Baker's Yeast is an important additive among the substances, which improves bred quality, thus, a consideration has been made to study the conditions and parameters that affecting the production of the yeast in a batch fermenter experimentally and theoretically. Experimental runs were implemented in a 12-liter pilot-scale fermenter to predict the rate of growth and other parameters such as amount of additive consumed and the amount of heat generated. The process is modeled and performed using a computer programming prepped for this purpose, the model gave a good agreement comparing to the experimental work specially in the log phase.
This qualitative study was conducted on eight types of commercial baking yeast which available in local markets to estimate their fermentation activity as affecting the Bread industry and the impact of the salt added to DoughLeavening, The results showed a great variation in the fermentation capacity of yeast samples (their role in swelling the dough), most notably the sample value Y3 and least sample Y7 and reached 80% and 20% respectively, and the value of Leavening by using the two types of yeast with addition of three levels of salt (0 , 1 and 2%) have 20.0 , 19.7 and 15.7 of the sample Y3, compared with 10.5 , 10.3 and 8.8 of the sample Y7 for each of the levels of salt respectively, reflect
... Show MoreThe present work concerns with simulating unsteady state equilibrium model for production of methyl oleate (biodiesel) from reaction of oleic acid with methanol using sulfuric acid as a catalyst in batch reactive distillation. MESHR equations of equilibrium model were solved using MATLAB (R2010a). The validity of simulation model was tested by comparing the simulation results with a data available in literature. UNIQUAC liquid phase activity coefficient model is the most appropriate model to describe the non-ideality of OLAC-MEOH-MEOL-H2O system. The chemical reactions rates results from EQ model indicating the rates are controlled by chemical kinetics. Several variables was studied such as molar ratio of methanol to oleic acid 4:1, 6:1
... Show MoreCitric acid is an essential ingredient for the manufacture of (12) key industrial chemicals. Citric acid use is increasing steadily with a high annual growth rate as a result of the development of ever more sophisticated applications. Citric acid is widely utilized in the food and pharmaceutical industries due to its low toxicity when compared to other acidulous. Other uses for citric acid can be found in cleaning supplies and detergents. Based on information from a review of the literature, Citric acid production substrates and methods for surface fermentation, submerged fermentation, solid-state fermentation, and international market expansion are all covered in the current review study. Finally, there is still much to learn about the
... Show MoreEthanol production were evaluated by many strains with varing
degree of flocculation in fermentation medium of date extract withl 0
Brix, PHS in 30C0آ آ for آ 48hr.lt was found that ethanol production decrease with increase of flocculation degree and non-flocculant strain is آ more efficient in آ producing ethanol from flocculant strain,then
ethanol sensitivity were examined for the same strains, in liquid medium YE, it was found thatآ آ strain is more sensitive from nonآ flocculant and ethanol sensitivity depends upon flocculation degree.
This study aimed to obtain an isolate of a mold that has well characteristic for production of citric acid from raw materials available locally by solid-state fermentation and determination of the optimum conditions for production .Fourteen mold isolates producing acid were obtained from different sources, involved decayed fruits and soils. These isolates were subjected to initial qualitative screening followed by secondary quantitative screening In secondary screening a method combined between the submerged fermentation and solid-state fermentation was followed using a piece of sponge saturated by nutrients required for growth and production of acid. It was found that the isolate of A7 was the highest producer for citric acid tha
... Show MoreIntroduction: Although soap industry is known from hundreds of years, the development accompanied with this industry was little. The development implied the mechanical equipment and the additive materials necessary to produce soap with the best specifications of shape, physical and chemical properties. Objectives: This research studies the use of vacuum reactive distillation VRD technique for soap production. Methods: Olein and Palmitin in the ratio of 3 to 1 were mixed in a flask with NaOH solution in stoichiometric amount under different vacuum pressures from -0.35 to -0.5 bar. Total conversion was reached by using the VRD technique. The soap produced by the VRD method was compared with soap prepared by the reaction - only method which
... Show MoreThirty local fungal isolates according to Aspergillus niger were screened for Inulinase production on synthetic solid medium depending on inulin hydrolysis appear as clear zone around fungal colony. Semi-quantitative screening was performed to select the most efficient isolate for inulinase production. the most efficient isolate was AN20. The optimum condition for enzyme production from A. niger isolate was determined by busing a medium composed of sugar cane moisten with corn steep liquor 5;5 (v/w) at initial pH 5.0 for 96 hours at 30 0C . Enzyme productivity was tested for each of the yeast Kluyveromyces marxianus, the fungus A. niger AN20 and for a mixed culture of A. niger and K. marxianus. The productivity of A. niger gave the highest
... Show MoreIn this paper, a mathematical model for the oxidative desulfurization of kerosene had been developed. The mathematical model and simulation process is a very important process due to it provides a better understanding of a real process. The mathematical model in this study was based on experimental results which were taken from literature to calculate the optimal kinetic parameters where simulation and optimization were conducted using gPROMS software. The optimal kinetic parameters were Activation energy 18.63958 kJ/mol, Pre-exponential factor 2201.34 (wt)-0.76636. min-1 and the reaction order 1.76636. These optimal kinetic parameters were used to find the optimal reaction conditions which
... Show More