Face recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreThe research aims to: Preparing rehabilitative exercises with accompanying tools to rehabilitate those with shoulder dislocation. Knowing the effect of rehabilitative exercises and accompanying aids in improving the muscular strength and motor range of those with dislocations in the shoulder joint. The two researchers used the experimental design with the same experimental group with the pre and post tests, so the researcher chose a sample appropriate to the nature of his research problem, its goals and its hypotheses, as a sample of the injured was chosen to remove the shoulder joint, who completed the treatment, who were not practicing sports, and those who went to the Physiotherapy Center at Al-Was
... Show MoreCytokines are signaling molecules between inflammatory cells that play a significant role in the pathogenesis of a disease. Among these cytokines are interleukins (ILs) 17A and 33, and accordingly, the current case-control study sought to investigate the role of each of the two cytokines in the risk of developing multiple sclerosis (MS). Sixty-eight relapsing-remitting MS (RRMS) Iraqi patients and twenty healthy individuals (control group) were enrolled. Enzyme linked immunosorbent assay (ELISA) kits were used to determine serum levels of IL-17A and IL-33. Results revealed that IL-17A and IL-33 levels were significantly higher in MS patients than in controls (14.1 ± 4.5 vs. 7.5 ± 3.8 pg/mL; p < 0.001 and 65.3 ± 16
... Show MoreThe present study was designed to determine the predictive capacity of Coronavirus’s impact, as well as, the psychological adjustment among university students in Oman. A total of (566) male and female students were employed to form the swtudy sample. The descriptive method was used. The findings showed that there is a significantly university student affected by Coronavirus; the dimensions of scale were arranged as follows: the Academic requirements of pandemic came first, the social communication came second, and the academic future stress came in third. The results also showed that Psychological Adjustment among University Students was affected by the Coronavirus pandemic, the average was low. Also, the result showed that the Corona
... Show MoreAdherence to cardiac medications makes a significant contribution to avoidance of morbidity and premature mortality in patients with cardiovascular disease. This quantitative study used cross‐sectional survey design to evaluate medication adherence and contributing factors among patients with cardiovascular disease, comparing patients who were admitted to a cardiac ward (
This study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K
... Show More