In the current study, a direct method was used to create a new series of charge-transfer complexes of chemicals. In a good yield, new charge-transfer complexes were produced when different quinones reacted with acetonitrile as solvent in a 1:1 mole ratio with N-phenyl-3,4-selenadiazo benzophenone imine. By using analysis techniques like UV, IR, and 1H, 13C-NMR, every substance was recognized. The analysis's results matched the chemical structures proposed for the synthesized substances. Functional theory of density (DFT)
has been used to analyze the molecular structure of the produced Charge-Transfer Complexes, and the energy gap, HOMO surfaces, and LUMO surfaces have all been created throughout the geometry optimization process ut
A new mixed ligand complexes have been prepared between 8- hydroxy quinoline and o-hydroxybenzylidene-1-phenyl-2,3-dimethyl-4-amino-3-pyrazolin-5-on with Mn(II),Fe(II),Co(II),Ni(II) and Cu(II) ions . the prepared complexes were isolated and characterized by (FT-IR)and (UV-Vis) spectroscopy. Elemental analysis (C.H.N) Flame atomic absorption technique . in addition to magnetic susceptibility and conductivity measurement.
A series of new compounds including p-bromo methyl pheno acetate [2]. N-( aminocarbonyl)–p-bromo pheno acetamide [3] , N-( aminothioyl) -p-bromo phenoacetyl amide [4], N-[4-(p-di phenyl)-1,3-oxazol-2-yl]-p-bromopheno acetamide [5],N-[4-p-di phenyl]-1,3-thiazol-2-yl-p-bromo phenoacet amide [6], p-bromopheno acetic acid hydrazide [7] , 1-N-(p-bromo pheno acetyl)-1,2-dihydro-pyridazin-3,6- dione [8], 1-N-(p-bromo pheno acetyl)-1,2-dihydro-phthalazin-3,8- dione[ 9], 1-(p-bromo pheno acetyl)-3-methylpyrazol-5-one [10] and 1-(p-bromo phenol acetyl)- 3,5-dimethyl pyrazole [11] have been synthesized. The prepared compounds were characterized by m.p.,FT-IR and 1H-NMR spectroscopy. Also ,the biological activity was evaluated .
Some metal ions (Mn+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2) complexes of quinaldic acid (QuinH) and α-picoline (α-Pic) have been synthesized and characterized on the basis of their , FTIR, (U.V-Vis) spectroscopy, conductivity measurements, magnetic susceptibility and atomic absorption. From the results obtained the following general formula has suggested for the prepared complexes [M(Quin)2( α-Pic)2].XH2O where M+2 = (Mn, Co, Ni, Cu, Zn, Cd and Hg), X = 2, X = zero for (Co+2 and Hg+2) complexes, (Quin-) = quinaldate ion, (α-Pic) = α-picoline. The results showed that the deprotonated ligand (QuinH) by using (KOH) coordinated to metal ions as bidentate ligand through the oxygen atom of the carboxylate group (-COO-) and the nitrogen ato
... Show MoreFour metal complexes mixed ligand of 2-aminophenol (2-AP) and tributylphosphine (PBu3) were produced in aqueous ethanol with (1:2:2) (M:2-AP:PBu3). The prepared complexes were identified by using flame atomic absorption, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. In addition antibacterial activity of the two ligands and mixed ligand complexes oboist three species of bacteria were also examined. The ligands and their complexes show good bacterial activities. From the obtained data the octahedral geometry was suggested for all prepared complexes.
This work includes synthesis of new six membered heterocyclic rings with effective amino group using the reaction of benzylideneacetophenone (chalcone) (1) with thiourea or urea in alcoholic basic medium to form: 1,3-thiazen-2-amine (2), and 1,3-oxazin-2-amine (8) respectively. The diazotization reaction was carried out with sodium nitrite in presence of hydrochloric acid to form diazonium salts which suffered coupling reaction with naphthols and phenols in the presence of sodium hydroxide to form colored azo dyes (4-7, and 10-13). o-methylation reaction of compounds (7) and (10) yielded : 1,3-thiazin -2-yl-diazenyl (14), and 1,3-oxazin-2-yl-diazenyl (15) respectively.The new compounds were characterized using vario
... Show MoreObjectives: Six different Schiff bases were synthesized from ampicillin and amoxicillin with isatin, 5-bromoisatin, and 5-nitroisatin. Methods: Ampicillin and Amoxicillin are linked directly through their α-amino groups to the acyl side chain with isatin and isatin derivatives by nucleophilic addition using glacial acetic acid as a catalyst. Results: chemical structures of these Schiff bases were confirmed using FTIR, 1H NMR and elemental microanalysis. The antibacterial activity was evaluated by measuring minimum inhibitory concentration (MIC) values and showed various degrees of antibacterial activities when compared with parent drugs. Compounds 1a and 2b, which are the Schiff bases of ampicillin and amoxicillin with isatin, showed very
... Show MoreFour metal complexes mixed ligand of 2-aminophenol (2-AP) and tributylphosphine (PBu3) were produced in aqueous ethanol with (1:2:2) (M:2-AP:PBu3). The prepared complexes were identified by using flame atomic absorption, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. In addition antibacterial activity of the two ligands and mixed ligand complexes oboist three species of bacteria were also examined. The ligands and their complexes show good bacterial activities. From the obtained data the octahedral geometry was suggested for all prepared complexes. Keywords: Mixed ligand complexes, spectral studies, 2-aminophenol, tributylphosphine.
Some metal ions (Mn+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2) complexes of quinaldic acid (QuinH) and α-picoline (α-Pic) have been synthesized and characterized on the basis of their , FTIR, (U.V-Vis) spectroscopy, conductivity measurements, magnetic susceptibility and atomic absorption. From the results obtained the following general formula has suggested for the prepared complexes [M(Quin)2( α-Pic)2].XH2O where M+2 = (Mn, Co, Ni, Cu, Zn, Cd and Hg), X = 2, X = zero for (Co+2 and Hg+2) complexes, (Quin-) = quinaldate ion, (α-Pic) = α-picoline. The results showed that the deprotonated ligand (QuinH) by using (KOH) coordinated to metal ions as bidentate ligand through the oxygen atom of the carboxylate group (-COO-) and the nitrogen ato
... Show MoreThis study aimed to fabricate a curcumin@platinum nanohybrid (CUR@Pt NPs) through a green tea–based synthesis method and to evaluate its various functions, including antioxidant, burn-healing, and selective anticancer activities against PANC-1 pancreatic cancer cells. Green tea polyphenols served as natural reducing and stabilizing agents, facilitating an eco-friendly, single-step manufacturing process. Physicochemical characterization confirmed successful nanohybrid formation: a CUR@Pt band appeared at 457 nm in the UV–Vis spectrum, XRD displayed crystalline platinum peaks at 2θ = 46.9°, and 67.0°, matching the (200), and (220) planes, respectively, and TEM images showed well-dispersed spherical nanoparticles with an average siz
... Show More