Aim: The purpose of this study was to analyze the patterns of facial fractures in children and to compare them between preschool- and school-aged children. Materials and methods: This retrospective observational study included 57 children with facial fractures. The variables analyzed were the age of the patients—divided into a preschool-aged group (0–5 years) and a school-aged group (6–12 years)—gender, cause of trauma, the facial bones involved, the pattern of fracture, the modality of treatment used, the time between injury and treatment, and the postoperative complications. Results: The incidence of facial fractures in children ≤12 years was 30.2%. The patients consisted of 40 (70.2%) males and 17 (29.8%) females, and most patients belonged to the school-aged group (n = 35, 61.4%). The most common cause of injury was falls. Mandibular fractures were the most common (54.2%), mostly involving the condylar region. Forty patients (70.2%) were treated surgically and 17 patients (29.8%) were managed conservatively. The variables that were significantly different between the two groups included the cause of injury, the site of injury, and the type of treatment. Conclusion: Facial fractures occur most frequently in school-aged children with male predominance, falls are the most common cause of facial fractures in children, the incidence of mandibular fractures is high and the condyle is the most affected site, the surgical treatment is indicated in most of the older age groups, and no major complications were encountered. Clinical significance: Facial fractures in children require special considerations in their management due to many characteristic features of the facial skeleton of the growing child and the possibility of growth disturbances that may result from these injuries, the incidence of facial fractures in children increases with the beginning of school and their treatment in school-aged children tends to be surgical rather than conservative.
The present research aims to know the relation of Violence on academic Failed and School s’ Drop - out among Intermediate stage Pupils. The sample of the research reached (400) male and female pupils (failed and not failed ), and (69) male and female that Drop – out from Intermediate stage. The researcher used scale of Violence that constructed by (AL- qaysi , 2004) after she got Validity and Reliability to it . So that she used t- test for one sample, t- test for two independent sample, and Person correlation coefficient as a statistical means. The research reached to the results that indicates raising of level of Violence among the Intermediate stage pupils (failed and not failed) and the male and female that Drop – out from Inte
... Show MoreGroupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is eff
... Show MoreThe process of accurate localization of the basic components of human faces (i.e., eyebrows, eyes, nose, mouth, etc.) from images is an important step in face processing techniques like face tracking, facial expression recognition or face recognition. However, it is a challenging task due to the variations in scale, orientation, pose, facial expressions, partial occlusions and lighting conditions. In the current paper, a scheme includes the method of three-hierarchal stages for facial components extraction is presented; it works regardless of illumination variance. Adaptive linear contrast enhancement methods like gamma correction and contrast stretching are used to simulate the variance in light condition among images. As testing material
... Show MoreRecent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. T
... Show MoreBackground: Acne is a common disorder experienced by adolescents and persists into adulthood in approximately 12%–14% of cases with psychological and social implications of high gravity. Fractional resurfacing employs a unique mechanism of action that repairs a fraction of skin at a time. The untreated healthy skin remains intact and actually aids the repair process, promoting rapid healing with only a day or two of downtime. Aims: This study, was designed to evaluate the safety and effectiveness of fractional photothermolysis (fractionated Er: YAG laser 2940nm) in treating atrophic acne scars. Methods: 7 females and 3 males with moderate to severe atrophic acne scarring were enrolled in this study that attained private clinic for Derm
... Show MoreThe interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm
... Show MoreIts well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
Background: Difficulties arise when attempting to imagine the interpupillary line and comparing it with the Fox plane guide and not more difficult than holding any instrument over the movable pupils just to demonstrate the interpupillary line. The aim of this study was to introduce ear lobes as alternative landmarks for the interpupillary line during orientation of the occlusal plane. Also, the other aim was to compare the ear lobes with the pupils of the eyes to verify that they were indifferent as anatomical landmarks. Materials & methods: The alternative landmarks, ear lobes, were presented and the method for orienting the occlusal plane with these landmarks was introduced. Digital pictures of 30 subjects, who participated in the study,
... Show MoreFacial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) f
... Show More