The deficiency of potable water resources and energy supply is emerging as a significant and concerning obstacle to sustainable development. Solar and waste heat-powered humidification dehumidification (HDH) desalination systems become essential due to the severe impacts of global warming and water shortages. This problem highlights the need to apply boosted water desalination solutions. Desalination is a capital-intensive process that demands considerable energy, predominantly sourced from fossil fuels worldwide, posing a significant carbon footprint risk. HDH is a very efficient desalination method suitable for remote areas with moderate freshwater requirements for domestic and agricultural usage. Several operational and maintenance concerns are to blame. The flow and thermal balances of humidifiers and dehumidifiers under the right conditions are crucial for system efficiency. These systems comprise a humidifier and dehumidifier, energy foundations for space or process heating and electricity generation, fluid transfer or efficiency enhancement accessories, and measurement-control devices. All technologies that enhance the performance of HDH systems are elucidated in this work. These are utilizing efficient components, renewable energy, heat recovery via multi-effect and multi-stage processes, waste heat-powered, and accelerating humidification and dehumidification processes through pressure variation or employing heat pumps, in addition to exergy and economical analyses. According to the present work, the seawater HDH system is feasible for freshwater generation. Regarding economics and gain output ratio, humidification–dehumidification is a viable approach for decentralized small-scale freshwater production applications, but it needs significant refinement. System productivity of fresh water is much higher with integrated solar water heating than with solar air heating. The HDH offers the lowest water yield cost per liter and ideal system productivity when paired with a heat pump. The suggested changes aim to enhance system and process efficiency, reducing electrical energy consumption and cost-effective, continuous, decentralized freshwater production. This thorough analysis establishes a foundation for future research on energy and exergy cycles based on humidification and dehumidification.
الخلفية: العقدية المقيحة المعروفة أيضًا باسم ""(GAS) هي احدى مسببات الأمراض ذات الأهمية الصحية العامة، حيث تصيب 18.1 مليون شخص في جميع أنحاء العالم وتقتل 500000 شخص كل عام. الهدف: حددت هذه المراجعة المقالات المنشورة حول عوامل الخطر واستراتيجيات الوقاية والسيطرة لأمراض المكورات العقدية. المواد والأساليب: تم إجراء بحث منهجي لتحديد الأوراق المنشورة على قواعد البيانات الإلكترونية Web of Science و PubMed و Scopus و Google Scholar في مح
... Show MoreIsatin is a heterocyclic molecule that belongs to one of the most important classes of organic compounds known as indolines. Isatin, isatin analogs, and their Schiff bases have recently attracted a lot of attention in medicinal chemistry. Isatin, itself, shows various biological activities such as antiviral, anticancer, antimicrobial, anti-inflammatory, analgesic, antioxidant, and anticonvulsant. Bis- Schiff bases containing isatin moiety have been known to possess a wide spectrum of pharmacological activities. This review offers up-to-date information on the most active isatin bis-Schiff bases, which would include anticancer, antimicrobial, antiviral, anticonvulsant, anti-inflammatory, and analgesic activities. These observations c
... Show MoreDistributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks
... Show MorePrevious studies on the synthesis and characterization of metal chelates with uracil by elemental analysis, conductivity, IR, UV-Vis, NMR spectroscopy, and thermal analysis were covered in this review article. Reviewing these studies, we found that uracil can be coordinated through the electron pair on the N1, N3, O2, or O4 atoms. If the uracil was a mono-dentate ligand, it will be coordinated by one of the following atoms: N1, N3 or O2. But if the uracil was bi-dentate ligand, it will be coordinated by atoms N1 and O2, N3 and O2 or N3 and O4. However, when uracil forms complexes in the form of polymers, coordination occurs through the following atoms: N1 and N3 or N1 and O4.
The electrical activity of the heart and the electrocardiogram (ECG) signal are fundamentally related. In the study that has been published, the ECG signal has been examined and used for a number of applications. The monitoring of heart rate and the analysis of heart rhythm patterns, the detection and diagnosis of cardiac diseases, the identification of emotional states, and the use of biometric identification methods are a few examples of applications in the field. Several various phases may be involved in the analysis of electrocardiogram (ECG) data, depending on the type of study being done. Preprocessing, feature extraction, feature selection, feature modification, and classification are frequently included in these stages. Ever
... Show MoreAlizarin is one of the popularly used and wide separated compounds with a chemical name (1,2- dihydroxy-9,10-anthraquinone) which belong to the anthraquinones family that contain three aromatic conjugated rings and in the central rings it contains two ketonic groups.1
Researchers dream of developing autonomous humanoid robots which behave/walk like a human being. Biped robots, although complex, have the greatest potential for use in human-centred environments such as the home or office. Studying biped robots is also important for understanding human locomotion and improving control strategies for prosthetic and orthotic limbs. Control systems of humans walking in cluttered environments are complex, however, and may involve multiple local controllers and commands from the cerebellum. Although biped robots have been of interest over the last four decades, no unified stability/balance criterion adopted for stabilization of miscellaneous walking/running modes of biped