The deficiency of potable water resources and energy supply is emerging as a significant and concerning obstacle to sustainable development. Solar and waste heat-powered humidification dehumidification (HDH) desalination systems become essential due to the severe impacts of global warming and water shortages. This problem highlights the need to apply boosted water desalination solutions. Desalination is a capital-intensive process that demands considerable energy, predominantly sourced from fossil fuels worldwide, posing a significant carbon footprint risk. HDH is a very efficient desalination method suitable for remote areas with moderate freshwater requirements for domestic and agricultural usage. Several operational and maintenance concerns are to blame. The flow and thermal balances of humidifiers and dehumidifiers under the right conditions are crucial for system efficiency. These systems comprise a humidifier and dehumidifier, energy foundations for space or process heating and electricity generation, fluid transfer or efficiency enhancement accessories, and measurement-control devices. All technologies that enhance the performance of HDH systems are elucidated in this work. These are utilizing efficient components, renewable energy, heat recovery via multi-effect and multi-stage processes, waste heat-powered, and accelerating humidification and dehumidification processes through pressure variation or employing heat pumps, in addition to exergy and economical analyses. According to the present work, the seawater HDH system is feasible for freshwater generation. Regarding economics and gain output ratio, humidification–dehumidification is a viable approach for decentralized small-scale freshwater production applications, but it needs significant refinement. System productivity of fresh water is much higher with integrated solar water heating than with solar air heating. The HDH offers the lowest water yield cost per liter and ideal system productivity when paired with a heat pump. The suggested changes aim to enhance system and process efficiency, reducing electrical energy consumption and cost-effective, continuous, decentralized freshwater production. This thorough analysis establishes a foundation for future research on energy and exergy cycles based on humidification and dehumidification.
The finite element approach is used to solve a variety of difficulties, including well bore stability, fluid flow production and injection wells, mechanical issues and others. Geomechanics is a term that includes a number of important aspects in the petroleum industry, such as studying the changes that can be occur in oil reservoirs and geological structures, and providing a picture of oil well stability during drilling. The current review study concerned about the advancements in the application of the finite element method (FEM) in the geomechanical field over a course of century.
Firstly, the study presented the early advancements of this method by development the structural framework of stress, make numerical computer solution
... Show MoreUndoubtedly, rutting in asphalt concrete pavement is considered a major dilemma in terms of pavement performance and safety faced by road users as well as the road authorities. Rutting is a bowl-shaped depression in the wheel paths that develop gradually with the increasing number of load applications. Heavy axle loadings besides the high pavement summer temperature enhance the problem of rutting. According to the AASHTO design equation for flexible pavements, a 1.1 in rut depth will reduce the present serviceability index of relatively new pavement, having no other distress, from 4.2 to 2.5. With this amount of drop in serviceability, the entire life of the pavement in effect has been lost. Therefore, it is crucial to look at the mechani
... Show MoreWellbore instability is a significant problem faced during drilling operations and causes loss of circulation, caving, stuck pipe, and well kick or blowout. These problems take extra time to treat and increase the Nonproductive Time (NPT). This paper aims to review the factors that influence the stability of wellbores and know the methods that have been reached to reduce them. Based on a current survey, the factors that affect the stability of the wellbore are far-field stress, rock mechanical properties, natural fractures, pore pressure, wellbore trajectory, drilling fluid chemicals, mobile formations, naturally over-pressured shale collapse, mud weight, temperature, and time. Also, the most suitable ways to reduce well
... Show MoreIn this work, a flat-plate solar air heater (FSAH) and a tubular solar air heater (TSAH) were designed and tested numerically. The work investigates the effect of increasing the contact area between the flowing air and the absorber surface of each heater and predicts the expected results before the fabrication of the experimental rig. Three-dimensional two models were designed and simulated by the ANSYS-FLUENT 16 Program. The solar irradiation and ambient air temperature were measured experimentally on December 1st 2022, at the weather conditions of Baghdad City- Iraq, at three air mass flow rates, 0.012 kg/s, 0.032 kg/s, and 0.052 kg/s. The numerical results showed the advantage in the thermal performance of
... Show MoreAnew Solar concentrator have been designed in this paper, this concentrators Were based on the total internal reflection in a prism, the prism angles has been calculated by depending on the solar incident ray angle in baghdad for a year. The optical design consist ofa triangular presume, Where the solar cells on one side of the prism Wh?le the prism head towered the south. The results show that there is an increasing in the solar ray concentrators and the cell area is reduced.
The removal of COD from wastewater generated by petroleum refinery has been investigated by adopting electrocoagulation (EC) combined with adsorption using activated carbon (AC) derived from avocado seeds. The process variables influencing COD removal were studied: current density (2–10 mA/cm2), pH (4–9), and AC dosage (0.2–1 g/L). Response surface methodology (RSM) based on Box–Behnken design (BBD) was used to construct a mathematical model of the EC/AC process. Results showed that current density has the major effect on the COD removal with a percent of contribution 32.78% followed by pH while AC dosage has not a remarkable effect due to the good characteristics of AC derived from avocado seeds. Increasing current density gives be
... Show More