Preferred Language
Articles
/
YhcvSpIBVTCNdQwCzKoI
Treatment of Petroleum Refinery Wastewater by Activated Carbon Assisted Electrocoagulation Process

The removal of COD from wastewater generated by petroleum refinery has been investigated by adopting electrocoagulation (EC) combined with adsorption using activated carbon (AC) derived from avocado seeds. The process variables influencing COD removal were studied: current density (2–10 mA/cm2), pH (4–9), and AC dosage (0.2–1 g/L). Response surface methodology (RSM) based on Box–Behnken design (BBD) was used to construct a mathematical model of the EC/AC process. Results showed that current density has the major effect on the COD removal with a percent of contribution 32.78% followed by pH while AC dosage has not a remarkable effect due to the good characteristics of AC derived from avocado seeds. Increasing current density gives better results while neutral conditions are suitable for EC/AC. The optimized conditions for higher removal of COD adopting the combined process were a current density of 10 mA/cm2, AC dosage of 0.2 g/L, and pH of 6.8 in which a removal efficiency of 81.6% was attained. The combining of EC with adsorption showed that adding a suitable amount of AC derived from avocado seeds resulted in enhancement of COD removal from 63.45% to 81.4%. Based on this high removal efficiency, the EC/AC could be adopted instead of traditional EC.

Scopus Clarivate Crossref
Publication Date
Tue Oct 01 2024
Journal Name
Journal Of Ecological Engineering
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Feb 01 2021
Journal Name
Iop Conference Series: Materials Science And Engineering
Performance Evaluation of a Combined Electrocoagulation– Electrooxidation Process for the Treatment of Petroleum Refinery Wastewater
Abstract<p>The present study investigates the application of a combined electrocoagulation-electrooxidation (EC-EO) process for the treatment of wastewater generated from Al-Dewaniya petroleum refinery plant in Iraq. The EC-EO process was examined in terms of its ability to simultaneously produce coagulant and oxidant agents by using a parallel plate configuration system composed of stainless steel plates as cathode and pair of aluminum and graphite plates as anode at two different current concentrations (1.92A/l and 0.96A/l). The results showed that the best conditions for treatment of Al-Dewaniya petroleum refinery wastewater using the combined approach were current concentration of (0.96A/l), current density</p> ... Show More
Crossref (5)
Crossref
View Publication
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Environmental Management
Scopus (5)
Crossref (6)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Study the Optimization of Petroleum Refinery Wastewater Treatment by Successive Electrocoagulation and Electro-oxidation Systems

In this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current densi

... Show More
Crossref (11)
Crossref
View Publication Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Study the Optimization of Petroleum Refinery Wastewater Treatment by Successive Electrocoagulation and Electro-oxidation Systems

In this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current density (C

... Show More
Crossref (11)
Crossref
View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Treatment of Al-Muthanna Petroleum Refinery Wastewater by Electrocoagulation Using a Tubular batch Electrochemical Reactor
Abstract<p>An electrocoagulation process has been used to eliminate the chemical oxygen demand (COD) from wastewaters discharged from the Al-Muthanna petroleum refinery plant. In this process, a circular aluminum bar was used as a sacrificial anode, and hallow cylinder made from stainless steel was used as a cathode in a tubular batch electrochemical Reactor. Impacts of the operating factors like current density (5-25mAcm<sup>-2</sup>), NaCl addition at concentrations (0-2g/l), and pH at values (3-11) on the COD removal efficiency were studied.</p><p>Results revealed that the increase in current density increases the COD removal efficiency, whereas an increase</p> ... Show More
Scopus (5)
Crossref (4)
Scopus Crossref
View Publication
Publication Date
Sat Jun 06 2020
Journal Name
Egyptian Journal Of Chemistry
Scopus (24)
Crossref (2)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Apr 01 2024
Journal Name
South African Journal Of Chemical Engineering
Scopus (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jun 05 2023
Journal Name
Al-khwarizmi Engineering Journal
Treatment of Petroleum Refinery Wastewater by Sono Fenton Process Utilizing the in-Situ Generated Hydrogen Peroxide

Combining ultrasonic irradiation and the Fenton process as a sono-Fenton process, the chemical oxygen demand (COD) in refinery wastewater was successfully eliminated using response surface methodology (RSM) with central composite design (CCD). The impact of two main influential operational parameters (iron dosage and reaction time) on the COD removal from wastewater generated by an Iraqi petroleum refinery facility was explored. Removal of 85.81% was attained under the optimal conditions of 21 minutes and 0.289 mM of  concentration. Additionally, the results revealed that the concentration of has the highest effect on the COD elimination, followed by reaction time. The high R2 value (96.40%) validated the strong fit of the mo

... Show More
Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Industrial And Engineering Chemistry
Scopus (9)
Crossref (6)
Scopus Clarivate Crossref
View Publication