Various theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comparison to the actual observational results. ANN simulation gives a clear insight into three crescent moon visibility regions: invisible (I), probably visible (P), and certainly visible (V). The proposed ANN is suitable for building lunar calendars, so it was used to build a four-year calendar on the horizon of Baghdad. The built calendar was compared with the official Hijri calendar in Iraq.
The present work represents description of three new species of genus Anthrenus
Geoffory from Iraq, these are : A. aradensis sp. nov., A. fabrici sp. nov. and A.
unicolor sp. nov. Locality, host plants and date of collection were given.
The research dealt with the effectiveness of prediction and foresight in design as a phenomenon that plays a role in the recipient's engagement with the design, as it shows the interaction between the recipient and the interior space. The designer is keen to diversify his formal vocabulary in a way that secures visual values that call for aesthetic integration, as well as securing mental and kinetic behavioral understanding in the interior space.
As the designer deals with a three-dimensional space that carries many visual scenes, the designer should not leave anything from it without standing on it with study and investigation, and puts the user as a basic goal as he provides interpretive data through prediction and foresight that le
Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo
TRIPS agreement was The first to apply protection by patents. However, this type of protection, which grants exclusive and monopoly rights to patent owners, came at the expense of developing countries which are considered rich in biodiversity and also at the expense of traditional and poor knowledge of modern technologies. The release of new plant varieties has led to the emergence of biopiracy and looting of the rights of developing countries without a license
In this research, the X-ray diffraction pattern was used, which was obtained experimentally after preparation of barium oxide powder. A program was used to analyze the X-ray diffraction lines of barium oxide nanoparticles, and then the particle size was calculated by using the Williamson-Hall method, where it was found that the value of the particle size is 25.356 nm. Also, the dislocation density was calculated, which is equal to1.555 x1015 (lines/nm2), and the value of the unit cell number was also calculated, as it is equal to 23831.
Haemoproteus burhinus is described from the stone curlew, Burhinus oedicnemus saharae (Reichenow) from Al-Attariya, 45 km SE Baghdad city middle of Iraq. It is related to but differs from H. peireci in that it hypertrophied the erythrocyte and the erythrocyte nucleus is always laterally displaced in microgametocytes.
Separation of Trigonelline, the major alkaloid in fenugreek seeds, is difficult because the extract of these seeds usually contains Trigonelline, choline, mucilage, and steroidal saponins, in addition to some other substances. This study amis to isolate the quaternary ammonium alkaloid (Trigonelline) and choline from fenugreek seeds (Trigonella-foenum graecum L.) which have similar physiochemical properties by modifying of the classical method. Seeds were defatted and then extracted with methanol. The presence of alkaloids was detected by using Mayer's and Dragendorff's reagents. In this work, trigonilline was isolated with traces of choline by subsequent processes of purification using analytical and preparative TLC techniques.
... Show More