Preferred Language
Articles
/
kYZKM4YBIXToZYALun7_
A Pattern-Recognizer Artificial Neural Network for the Prediction of New Crescent Visibility in Iraq
...Show More Authors

Various theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comparison to the actual observational results. ANN simulation gives a clear insight into three crescent moon visibility regions: invisible (I), probably visible (P), and certainly visible (V). The proposed ANN is suitable for building lunar calendars, so it was used to build a four-year calendar on the horizon of Baghdad. The built calendar was compared with the official Hijri calendar in Iraq.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Mar 31 2022
Journal Name
Iraqi Geological Journal
Development of Artificial Intelligence Models for Estimating Rate of Penetration in East Baghdad Field, Middle Iraq
...Show More Authors

It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i

... Show More
Crossref
Publication Date
Tue Jul 01 2014
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
A NEW HOST RECORD FOR TOMATO LEAF MINER TUTA ABSOLUTA (MEYRICK, 1917) IN BAGHDAD PROVINCE, IRAQ
...Show More Authors

  In 2010, the tomato leaf miner Tuta absoluta (Meyrick, 1917) was reported for the first time in Iraq. The larvae can feed on all parts of tomato plants and can damage all the growth stages. The main host plant is tomato, Lycopersicon esculentum, but it can also attack other plants in Solanaceae family. In this study it was found attacking alfalfa plants, Medicago sativa in Baghdad Province. This finding reveals that alfalfa also serves as a host plant for T. absoluta in Iraq.

View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
A Proposed Agent System for Network Monitoring
...Show More Authors

The traditional centralized network management approach presents severe efficiency and scalability limitations in large scale networks. The process of data collection and analysis typically involves huge transfers of management data to the manager which cause considerable network throughput and bottlenecks at the manager side. All these problems processed using the Agent technology as a solution to distribute the management functionality over the network elements. The proposed system consists of the server agent that is working together with clients agents to monitor the logging (off, on) of the clients computers and which user is working on it. file system watcher mechanism is used to indicate any change in files. The results were presente

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Aug 27 2024
Journal Name
Tem Journal
Preparing the Electrical Signal Data of the Heart by Performing Segmentation Based on the Neural Network U-Net
...Show More Authors

Research on the automated extraction of essential data from an electrocardiography (ECG) recording has been a significant topic for a long time. The main focus of digital processing processes is to measure fiducial points that determine the beginning and end of the P, QRS, and T waves based on their waveform properties. The presence of unavoidable noise during ECG data collection and inherent physiological differences among individuals make it challenging to accurately identify these reference points, resulting in suboptimal performance. This is done through several primary stages that rely on the idea of preliminary processing of the ECG electrical signal through a set of steps (preparing raw data and converting them into files tha

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Fri Sep 30 2016
Journal Name
Al-khwarizmi Engineering Journal
Modeling the removal of Cadmium Ions from Aqueous Solutions onto Olive Pips Using Neural Network Technique
...Show More Authors

The uptake of Cd(II) ions from simulated wastewater onto olive pips was modeled using artificial neural network (ANN) which consisted of three layers. Based on 112 batch experiments, the effect of contact time (10-240 min), initial pH (2-6), initial concentration (25-250 mg/l), biosorbent dosage (0.05-2 g/100 ml), agitation speed (0-250 rpm) and temperature (20-60ºC) were studied. The maximum uptake (=92 %) of Cd(II) was achieved at optimum parameters of 60 min, 6, 50 mg/l, 1 g/100 ml, 250 rpm and 25ºC respectively.

Tangent sigmoid and linear transfer functions of ANN for hidden and output layers respectively with 7 neurons were sufficient to present good predictions for cadmium removal efficiency with coefficient of correlatio

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology
...Show More Authors

<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jul 01 2017
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
THE SPOTTED SANDGROUSE, PTEROCLES SENEGALLUS (LINNAEUS, 1771) AS A NEW HOST FOR THE SPIRURID NEMATODE HARTERTIA GALLINARUM (THEILER, 1919) IN IRAQ
...Show More Authors

    In this work, the spirurid nematode Hartertia gallinarum was reported in the intestine of the spotted sandgrouse, Pterocles senegallus, collected in three different locations: Ga'ara Depression, Iraqi Western Desert, Zurbatiyah and Al-Attariyah, Middle of Iraq. Description and measurements of the nematode were given. The role of termites in the infection of P. senegallus with H. gallinarum was discussed. Occurrence of H. gallinarum in P. senegallus represents a new host record.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Jun 30 2024
Journal Name
International Journal Of Intelligent Engineering And Systems
Development of Intelligent Control Strategy for an Anesthesia System Based on Radial Basis Function Neural Network Like PID Controller
...Show More Authors

View Publication
Scopus (2)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
DYNAMIC MODELING FOR DISCRETE SURVIVAL DATA BY USING ARTIFICIAL NEURAL NETWORKS AND ITERATIVELY WEIGHTED KALMAN FILTER SMOOTHING WITH COMPARISON
...Show More Authors

Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re

... Show More
Preview PDF
Scopus (1)
Scopus
Publication Date
Tue Jun 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Application of Neural Network in the Identification of the Cumulative Production from AB unit in Main pays Reservoir of South Rumaila Oil Field.
...Show More Authors

A common field development task is the object of the present research by specifying the best location of new horizontal re-entry wells within AB unit of South Rumaila Oil Field. One of the key parameters in the success of a new well is the well location in the reservoir, especially when there are several wells are planned to be drilled from the existing wells. This paper demonstrates an application of neural network with reservoir simulation technique as decision tool. A fully trained predictive artificial feed forward neural network (FFNNW) with efficient selection of horizontal re-entry wells location in AB unit has been carried out with maintaining a reasonable accuracy. Sets of available input data were collected from the exploited g

... Show More
View Publication Preview PDF