Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It also presents the optimal mud weight window for this field, which can be used to optimise the mud weights to minimise the wellbore instability issues. The results showed that an artificial neural network is a powerful tool for determining the breakout zones using the input data. The obtaining root mean square error and the determination coefficient were respectively 0.0082 and 0.959, by which the 1D MEM gave a high match between the predicted wellbore instabilities using the Mogi-failure criterion and the predicted breakout using the ANN model. Most borehole enlargements occur due to formation shear failures because of using low mud weights during drilling. The conclusion clarify the1.35 g/cc is the optimal mud weights for drilling new wells in this field of interest with fewer drilling issues.
Storing and transferring the images data are raised in recent years due to requisiteness of transmission bandwidth for considerable storage capacity. Data compression method is proposed and applied in an attempt to convert data files into smaller files. The proposed and applied method is based on the Wavelet Difference Reduction (WDR) as considered the most efficient image coding method in recent years. Compression are done for three different Wavelet based Image techniques using WDR process. These techniques are implemented with different types of wavelet codecs. These are Daub2+2,2 Integer Wavelet transform, Daub5/3 integer to integer wavelet transform, and Daub9/7 Wavelet transform with level four. The used mu
... Show MoreThe aim of this paper is to present a semi - analytic technique for solving singular initial value problems of ordinary differential equations with a singularity of different kinds to construct polynomial solution using two point osculatory interpolation. The efficiency and accuracy of suggested method is assessed by comparisons with exact and other approximate solutions for a wide classes of non–homogeneous, non–linear singular initial value problems. A new, efficient estimate of the global error is used for adaptive mesh selection. Also, analyze some of the numerical aspects
... Show MoreThis paper describes theoretical modeling of electrostatic mirror based on two cylindrical electrodes, A computational investigation has been carried out on the design and properties of the electrostatic mirror. we suggest a mathematical expression to represent the axial potential of an electrostatic mirror. The beam path by using the Bimurzaev technique have been investigated as a mirror trajectory with the aid of Runge – Kutta method. the electrode shape of mirror two electrode has been determined by using package SIMION computer program . The spherical and chromatic aberrations coefficients of mirror has been computed and normalized in terms of the focal length. The choice of the mirror depends on the op
... Show MoreFG Mohammed, HM Al-Dabbas, Iraqi journal of science, 2018 - Cited by 6
The aim of this research work is to study the effect of stabilizing gypseous soil, which covers vast areas in the middle, west and south parts of Iraq, using liquid asphalt on its strength properties to be used as a base course layer replacing the traditional materials of coarse aggregate and broken stones which are scarce at economical prices and hauling distances. Gypseous soil brought from Al-Ramadi City, west of Iraq, with gypsum content of 66.65%, medium curing cutback asphalt (MC-30), and hydrated lime are used in this study. The conducted tests on untreated and treated gypseous soil with different percentages of medium curing cutback asphalt (MC-30), water, and lime were: unconfined compression strength, and one dimensional confine
... Show MoreA new de-blurring technique was proposed in order to reduced or remove the blur in the images. The proposed filter was designed from the Lagrange interpolation calculation with adjusted by fuzzy rules and supported by wavelet decomposing technique. The proposed Wavelet Lagrange Fuzzy filter gives good results for fully and partially blurring region in images.
In this paper, a new approach was suggested to the method of Gauss Seidel through the controlling of equations installation before the beginning of the method in the traditional way. New structure of equations occur after the diagnosis of the variable that causes the fluctuation and the slow extract of the results, then eradicating this variable. This procedure leads to a higher accuracy and less number of steps than the old method. By using the this proposed method, there will be a possibility of solving many of divergent values equations which cannot be solved by the old style.
The aim of this research work is to study the effect of stabilizing gypseous soil, which covers
vast areas in the middle, west and south parts of Iraq, using liquid asphalt on its strength properties
to be used as a base course layer replacing the traditional materials of coarse aggregate and broken
stones which are scarce at economical prices and hauling distances.
Gypseous soil brought from Al-Ramadi City, west of Iraq, with gypsum content of 66.65%,
medium curing cutback asphalt (MC-30), and hydrated lime are used in this study.
The conducted tests on untreated and treated gypseous soil with different percentages of medium
curing cutback asphalt (MC-30), water, and lime were: unconfined compression strength, and o