Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It also presents the optimal mud weight window for this field, which can be used to optimise the mud weights to minimise the wellbore instability issues. The results showed that an artificial neural network is a powerful tool for determining the breakout zones using the input data. The obtaining root mean square error and the determination coefficient were respectively 0.0082 and 0.959, by which the 1D MEM gave a high match between the predicted wellbore instabilities using the Mogi-failure criterion and the predicted breakout using the ANN model. Most borehole enlargements occur due to formation shear failures because of using low mud weights during drilling. The conclusion clarify the1.35 g/cc is the optimal mud weights for drilling new wells in this field of interest with fewer drilling issues.
Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show MoreThe aim of the research is to identify the percentage of success and failure of some compound offensive skills in joiner basketball. It was evident that development only occurred though the mastery of the basic single offence skills as well as the ability to perform compound skills accurately and consistently. Not paying enough attention to compound skills leads evidentially to weakness in the athlete's level that in turn leads to mistakes in performance. Six joiner games of the best four teams in Baghdad were filmed and analyzed. The results of analyzing the compound offence skills were as follows: There was some weakness in the athletes' ability in using compound offence skills specially receiving, dribbling and following through that
... Show MoreIn this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show MoreMobile Wireless sensor networks have acquired a great interest recently due to their capability to provide good solutions and low-priced in multiple fields. Internet of Things (IoT) connects different technologies such as sensing, communication, networking, and cloud computing. It can be used in monitoring, health care and smart cities. The most suitable infrastructure for IoT application is wireless sensor networks. One of the main defiance of WSNs is the power limitation of the sensor node. Clustering model is an actual way to eliminate the inspired power during the transmission of the sensed data to a central point called a Base Station (BS). In this paper, efficient clustering protocols are offered to prolong network lifetime. A kern
... Show MoreAccountancy unit is looked is upon as unit that established for the purpose achieve it goals and programmers for unlimited time. Unless otherwise take place such as liquation whether voluntary or mandatory. Thus going concern logic is considered to be the logical foundation witch the familiar accounting principles are based upon. The future of a Company real its financial statues and position and the extent of it ability to face events in future. Hence the success and continuity its activities depend on the extent of the company activity to generate profits. And its ability to retain appropriate liquidity to serve its debts.
Therefore financial statements of the company consider to be on
... Show MoreDue to the availability of technology stemming from in-depth research in this sector and the drawbacks of other identifying methods, biometrics has drawn maximum attention and established itself as the most reliable alternative for recognition in recent years. Efforts are still being made to develop a user-friendly system that is up to par with security-system requirements and yields more reliable outcomes while safeguarding assets and ensuring privacy. Human age estimation and Gender identification are both challenging endeavours. Biomarkers and methods for determining biological age and gender have been extensively researched, and each has advantages and disadvantages. Facial-image-based positioning is crucial for many application
... Show MoreNon-orthogonal Multiple Access (NOMA) is a multiple-access technique allowing multiusers to share the same communication resources, increasing spectral efficiency and throughput. NOMA has been shown to provide significant performance gains over orthogonal multiple access (OMA) regarding spectral efficiency and throughput. In this paper, two scenarios of NOMA are analyzed and simulated, involving two users and multiple users (four users) to evaluate NOMA's performance. The simulated results indicate that the achievable sum rate for the two users’ scenarios is 16.7 (bps/Hz), while for the multi-users scenario is 20.69 (bps/Hz) at transmitted power of 25 dBm. The BER for two users’ scenarios is 0.004202 and 0.001564 for
... Show MoreAbstract:
Objectives: This study aims to (1) find out the association between patients' age, years of getting the disease, and their spiritual coping ability, and (2) investigate the differences in illness perception and spiritual coping ability between gender groups, level of education groups, monthly income groups, residence groups and satisfaction with health services groups.
Methodology
A descriptive correlational design is used in this study. The study sample includes a convenience sample of (158) patients with chronic kidney failure.
The study instrument consists of two parts; the first one focuses on participants’ sociodemographic characteristics, and the second part deals with participants’ spiritual coping by us
It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological
... Show MoreShuaiba Formation is a carbonate succession deposited within Aptian Sequences. This research deals with the petrophysical and reservoir characterizations characteristics of the interval of interest in five wells of the Nasiriyah oil field. The petrophysical properties were determined by using different types of well logs, such as electric logs (LLS, LLD, MFSL), porosity logs (neutron, density, sonic), as well as gamma ray log. The studied sequence was mostly affected by dolomitization, which changed the lithology of the formation to dolostone and enhanced the secondary porosity that replaced the primary porosity. Depending on gamma ray log response and the shale volume, the formation is classified into three zone
... Show More