Two experiments were carried out, the first at the College of Agriculture - University of Baghdad during spring season 2017 Everest cv. class (Elite) was used to study the effect of foliar application of calcium and magnesium and addition of humic acid to the soil on potato growth and yield, The layout of the experiment was factorial within RCBD design using three replicates. Calcium and Magnesium sprayed with concentrations (0, 500, 1000 mg.L-1), while the humic acid was added to the soil with (0, 0.75 gm.m2), The second experiment included storage of tubers produced from the spring season, with to study the effect of field treatments on improving the storability of the tubers. The results showed that the treatment of calcium spray was superior a concentration of 1000 mg.L-1 in plant height, leaf area, weight of tuber, plant yield and protein % in tubers after storage and reduced the percentage of damaged in tubers stored by 1.57%. The magnesium spray treatment with 1000 mg. L-1 exceeded the number of leaves, leaf area, number of tubers per plant, plant yield, the accumulation of dry matter and the percentage of protein in the stored tubers. Humic acid with 0.75 gm.m2 was superior in the plant height , the tuber weight and the single plant yield , the concentration of dry matter and the protein percentage in the stored tubers produced. The interaction treatment (500 mg.L-1 calcium + 0.75 gm2 of Humic acid + 0 mg.L-1 of Mg) was superior in the single plant yield which 1.28 kg.plant-1.
The activity concentration of natural radioactivity levels, of artificial cesium and transfer factor from soil to plants in agricultural areas at Al- Yusiefya region were determined by using NaI (Tl) detector spectrometer. Ten species of leafy plants have been selected: Spinach, Parsley, Watercress, Lettuce, Rashad, Radish, Green onion, Turnip green, Green beet and Mint. The mean activity concentrations of 238U, 232Th, 40K and 137Cs in leafy vegetable samples were 12.4±3.8, 14.8±4.7, 283±93 and 1.06±0.99 Bg/kg, and in soil samples were 15.9±4.3, 16.1±5.2, 298.5±3.9, and 1.11±0.37 Bq/kg. The radiation hazard indices were evaluated (radium
... Show MoreAn electrocoagulation process has been used to eliminate the chemical oxygen demand (COD) from wastewaters discharged from the Al-Muthanna petroleum refinery plant. In this process, a circular aluminum bar was used as a sacrificial anode, and hallow cylinder made from stainless steel was used as a cathode in a tubular batch electrochemical Reactor. Impacts of the operating factors like current density (5-25mAcm-2), NaCl addition at concentrations (0-2g/l), and pH at values (3-11) on the COD removal efficiency were studied.
Results revealed that the increase in current density increases the COD removal efficiency, whereas an increase
The present study focuses on synthesizing solar selective absorber thin films, combining nanostructured, binary transition metal spinel features and a composite oxide of Co and Ni. Single-layered designs of crystalline spinel-type oxides using a facile, easy and relatively cost-effective wet chemical spray pyrolysis method were prepared with a crystalline structure of MxCo3−xO4. The role of the annealing temperature on the solar selective performance of nickel-cobalt oxide thin films (∼725 ± 20 nm thick) was investigated. XRD analysis confirmed the formation of high crystalline quality thin films with a crystallite si
In the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm−2), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD re
Catalytic reduction is considered an effective approach for the reduction of toxic organic pollutants from the environment, but finding an active catalyst is still a big challenge. Herein, Ag decorated CeO2 catalyst was synthesized through polyol reduction method and applied for catalytic reduction (conversion) of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The Ag decorated CeO2 catalyst displayed an outstanding reduction activity with 99% conversion of 4-NP in 5 min with a 0.61 min−1 reaction rate (k). A number of structural characterization techniques were executed to investigate the influence of Ag on CeO2 and its effect on the catalytic conversion of 4-NP. The outstanding catalytic performances of the Ag-CeO2 catalyst can be assigne
... Show MoreThis study examines the causes of time delays and cost overruns in a selection of thirty post-disaster reconstruction projects in Iraq. Although delay factors have been studied in many countries and contexts, little data exists from countries under the conditions characterizing Iraq during the last 10-15 years. A case study approach was used, with thirty construction projects of different types and sizes selected from the Baghdad region. Project data was gathered from a survey which was used to build statistical relationships between time and cost delay ratios and delay factors in post disaster projects. The most important delay factors identified were contractor failure, redesigning of designs/plans and change orders, security is
... Show MoreBy optimizing the efficiency of a modular simulation model of the PV module structure by genetic algorithm, under several weather conditions, as a portion of recognizing the ideal plan of a Near Zero Energy Household (NZEH), an ideal life cycle cost can be performed. The optimum design from combinations of NZEH-variable designs, are construction positioning, window-to-wall proportion, and glazing categories, which will help maximize the energy created by photovoltaic panels. Comprehensive simulation technique and modeling are utilized in the solar module I-V and for P-V output power. Both of them are constructed on the famous five-parameter model. In addition, the efficiency of the PV panel is established by the genetic algorithm
... Show MoreIn this work, a simple and very sensitive cloud point extraction (CPE) process was developed for the determination of trace amount of metoclopramide hydrochloride (MTH) in pharmaceutical dosage forms. The method is based on the extraction of the azo-dye results from the coupling reaction of diazotized MTH with p-coumaric acid (p-CA) using nonionic surfactant (Triton X114). The extracted azo-dye in the surfactant rich phase was dissolved in ethanol and detected spectrophotometrically at λmax 480 nm. The reaction was studied using both batch and CPE methods (with and without extraction) and a simple comparison between the two methods was performed. The conditions that may be affected by the extraction process and the sensitivity of m
... Show MoreMethylotrophs bacteria are ubiquitous, and they have the ability to consume single carbon (C1) which makes them biological conversion machines. It is the first study to find facultative methylotrophic bacteria in contaminated soils in Iraq. Conventional PCR was employed to amplify MxaF that encodes methanol dehydrogenase enzyme. DNA templates were extracted from bacteria isolated from five contaminated sites in Basra. The gene specific PCR detected Methylorubrum extorquens as the most dominant species in these environments. The ability of M. extorquens to degrade aliphatic hydrocarbons compound was tested at the laboratory. Within 7 days, gas chromatographic (GC) studies of remaining utilize
... Show More