<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121, InceptionV3, and Inception-ResNetV2. RNN was used to classify data after extracting complicated characteristics from them using CNN. The VGG19-RNN design had the greatest accuracy of all of the networks with 97.8% accuracy. Gradient-weighted the class activation mapping (Grad-CAM) method was then used to show the decision-making areas of pictures that are distinctive to each class. In comparison to other current systems, the system produced promising findings, and it may be confirmed as additional samples become available in the future. For medical personnel, the examination revealed an excellent alternative way of diagnosing COVID-19.</p>
Coronavirus 2019 (COVID-19) pandemic led to a massive global socio-economic tragedy that has impacted the ecosystem. This paper aims to contextualize urban and rural environmental situations during the COVID-19 pandemic in the Middle East and North Africa (MENA) Region.
An online survey was conducted, 6770 participants were included in the final analysis, and 64% were females. The majority of the participants were urban citizens (74%). Over 50% of the urban residents significantly (
Thin films of (Cu2S)100-x( SnS2 )x at X=[ 30,40, &50)]% with thickness (0.9±0.03)µm , had been prepared by chemical spray pyrolysis method on glass substrates at 573 K. These films were then annealed under low pressure of(10-2) mbar ,373)423&473)K for one hour . This research includes , studying the the optical properties of (Cu2S)100-x-(SnS2)x at X=[ 30,40, &50)]% .Moreover studying the effect of annealing on their optical properties , in order to fabricate films with high stability and transmittance that can be used in solar cells. The transmittance and absorbance spectra had been recorded in the wavelength range (310 - 1100) nm in order to study the optical properties . It was found that these films had direct optical band
... Show MoreA polycrystalline PbxS1-x alloys with various Pb content ( 0.54 and 0.55) has been prepared successfully. The structure and composition of alloys are determined by X-ray diffraction (XRD), atomic absorption spectroscopy (AAS) and X-ray fluorescence (XRF) respectively. The X-ray diffraction results shows that the structure is polycrystalline with cubic structure, and there are strong peaks at the direction (200) and (111), the grain size varies between 20 and 82 nm. From AAS and XRF result, the concentrations of Pb content for these alloys were determined. The results show high accuracy and very close to the theoretical values. A photoconductive detector as a bulk has been fabricated by taking pieces of prepared alloys and polished chemic
... Show MoreIn this work, we first construct Hermite wavelets on the interval [0,1) with it’s product, Operational matrix of integration 2^k M×2^k M is derived, and used it for solving nonlinear Variational problems with reduced it to a system of algebric equations and aid of direct method. Finally, some examples are given to illustrate the efficiency and performance of presented method.
Production of fatty acid esters (biodiesel) from oleic acid and 2-ethylhexanol using sulfated zirconia as solid catalyst for the production of biodiesel was investigated in this work.
The parameters studied were temperature of reaction (100 to 130°C), molar ratio of alcohol to free fatty acid (1:1 to 3:1), concentration of catalyst (0.5 to 3%wt), mixing speed (500 to 900 rpm) and types of sulfated zirconia (i.e modified, commercial, prepared catalyst according to literature and reused catalyst). The results show the best conversion to biodiesel was 97.74% at conditions of 130°C, 3:1, 2wt% and 650 rpm using modified catalyst respectively. Also, modified c
... Show MoreIt is well known that petroleum refineries are considered the largest generator of oily sludge which may cause serious threats to the environment if disposed of without treatment. Throughout the present research, it can be said that a hybrid process including ultrasonic treatment coupled with froth floatation has been shown as a green efficient treatment of oily sludge waste from the bottom of crude oil tanks in Al-Daura refinery and able to get high yield of base oil recovery which is 65% at the optimum operating conditions (treatment time = 30 min, ultrasonic wave amplitude = 60 micron, and (solvent: oily sludge) ratio = 4). Experimental results showed that 83% of the solvent used was recovered meanwhile the main water
... Show MoreHybrid bilayer heterojunction Zinc Phthalocyanine (ZnPc) thin-film P-type is considered as a donor active layer as well as the Zinc Oxide (ZnO) thin film n-type is considered as an acceptor with (Electron Transport Layer). In this study, using the technique of Q-switching Nd-YAG Pulsed Laser Deposition (PLD) under vacuum condition 10-3 torr on two ITO (Indium Tin Oxide) and (AL) electrodes and aluminum, is used to construct the hydride bilayer photovoltaic solar cell heterojunction (PVSC). The electrical properties of hybrid heterojunction Al/ZnPc/ZnO/ITO thin film are studied. The results show that the voltage of open circuit (V_oc=0.567V), a short circuit (I_sc=36 ?A), and the fill factor (FF) of 0.443. In addition, the conversion
... Show MoreThis study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K
... Show MoreThis paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show More