<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121, InceptionV3, and Inception-ResNetV2. RNN was used to classify data after extracting complicated characteristics from them using CNN. The VGG19-RNN design had the greatest accuracy of all of the networks with 97.8% accuracy. Gradient-weighted the class activation mapping (Grad-CAM) method was then used to show the decision-making areas of pictures that are distinctive to each class. In comparison to other current systems, the system produced promising findings, and it may be confirmed as additional samples become available in the future. For medical personnel, the examination revealed an excellent alternative way of diagnosing COVID-19.</p>
The educational service industry is one of the most negatively affected industries by the spread of the COVID-19 pandemic. Government agencies have taken many measures to slow its spread, and then restrict movement and gatherings and stop recreational activities. Furthermore, the repercussions of the curfew had a significant impact due to the interruption in actual attendance for students and employees, and the severity of the Covid-19 crisis and its (economic, social, security, humanitarian and behavioral) effects on all societies and work sectors is no secret to anyone. Iraq, like other countries, was also affected by the negative impact of Covid-19 pandemic in all fields of institutional work, especially public fields, and specifically t
... Show MoreIt is well known that petroleum refineries are considered the largest generator of oily sludge which may cause serious threats to the environment if disposed of without treatment. Throughout the present research, it can be said that a hybrid process including ultrasonic treatment coupled with froth floatation has been shown as a green efficient treatment of oily sludge waste from the bottom of crude oil tanks in Al-Daura refinery and able to get high yield of base oil recovery which is 65% at the optimum operating conditions (treatment time = 30 min, ultrasonic wave amplitude = 60 micron, and (solvent: oily sludge) ratio = 4). Experimental results showed that 83% of the solvent used was recovered meanwhile the main water
... Show MoreHybrid bilayer heterojunction Zinc Phthalocyanine (ZnPc) thin-film P-type is considered as a donor active layer as well as the Zinc Oxide (ZnO) thin film n-type is considered as an acceptor with (Electron Transport Layer). In this study, using the technique of Q-switching Nd-YAG Pulsed Laser Deposition (PLD) under vacuum condition 10-3 torr on two ITO (Indium Tin Oxide) and (AL) electrodes and aluminum, is used to construct the hydride bilayer photovoltaic solar cell heterojunction (PVSC). The electrical properties of hybrid heterojunction Al/ZnPc/ZnO/ITO thin film are studied. The results show that the voltage of open circuit (V_oc=0.567V), a short circuit (I_sc=36 ?A), and the fill factor (FF) of 0.443. In addition, the conversion
... Show MoreThe successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show MoreThis study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K
... Show MoreSpray pyrolysis technique was subjected to synthesized (SnO2)1-x (TiO2: CuO) x Thin films on different substrates like glass and single crystal silicon using. The structure of the deposited films was studied using x-ray diffraction. A more pronounced diffraction peaks of SnO2 while no peaks of (CuO , TiO2 ) phase appear in the X-ray profiles by increasing of the content of (TiO2 , CuO) in the sprayed films. Mixing concentration (TiO2 , CuO) influences on the size of the crystallites of the SnO2 films ,the size of crystallites of the spray paralyzed oxide films change in regular manner by increasing of (TiO
... Show More