Light naphtha treatment was achieved over 0.3wt%Pt loaded-alumina, HY-zeolite and Zr/W/HY-zeolite catalysts at temperature rang of 240-370°C, hydrogen to hydrocarbon mole ratio of 1-4 0.75-3 wt/wt/hr, liquid hourly space velocity (LHSV) and at atmospheric pressure. The hydroconversion of light naphtha over Pt loaded catalyst shows two main reactions; hydrocracking and hydroisomerization reactions. The catalytic conversion of a light naphtha is greatly influenced by reaction temperature, LHSV, and catalyst function. Naphtha transformation (hyroisomerization, cracking and aromatization) increases with decreasing LHSV and increasing temperature except hydroisomerization activity increases with increasing of temperature till 300°C then began to decrease due to the formation of hydrocracking reaction. The investigation of Pt containing catalysts under study shows a very high hydrogenlysis activity , due to presence of metal component (i.e. Zr, W) which enhances the rate of paraffin isomerization and cracking.The hyroisomerization and the hydrocraking activities can be arranged as follows,. Pt/Zr/W/HY > Pt/HY > Pt/γ-Al2O3 The results showed that, Pt/γ-Al2O3 has higher activity for the direct dehydrogenation of C6 and C7 paraffin's present in naphtha to aromatics than Pt/HY and Pt/Zr/W/HY. This was due to pore volume catalyst ,the aromatics compounds increased as the pore volume increased
The choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators. To mo
... Show MoreThe choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators.
... Show MoreBackground: Dental implants act as infrastructure for fixed restoration to look like as a natural tooth. Osseointegration is a biological events and considered as a base for success of dental implant. The aim of this study is to evaluate the bond strength between bone and Ti implant coated with mixture of nano hydroxyapatite-chitosan-collagen compared with Ti implants coated with nano hydroxyapatite implanted in rabbit tibia, after different period of implantation time (two and six weeks) by torque removal test. Material and methods: 36 screws of commercially pure titanium; 8mm in length and 3mm diameter , 18 screws coated with mixture of nano hydroxyapatite-chitosan-collagen and18 screws coated with nano hydroxyapatite by dip coating. St
... Show MoreBackground: The mechanical and physical properties of Polymethyl methacrylate (PMMA) don’tfulfill the entire ideal requirements of denture base materials. The purpose of this study was to produce new modified polymer nanocomposite (PMMA /ZrO2-TiO2) andassess itsimpact strength, transverse strength and thermal conductivity in comparison to the conventionalheat polymerized acrylic resin. Materials and Methods: Both ZrO2 and TiO2nano fillers were silanized with TMSPM (trimethoxysilyl propyl methacrylate) silane coupling agent before beingdispersed by ultrasonication with the methylmethacrylate (monomer) and mixed with the polymer by means of 2% by weight in (1:1) ratio, 60 specimens were constructed by conventional water bath processing
... Show MoreThe aim of this study was to investigate the effectiveness of binary solvent for regeneration of spent lubricating oil by extraction-flocculation process. The regeneration was investigated by bench scale experiments by using locally provided solvents (Heavy Naphtha, n-Butanol, and iso-Butanol). Solvents to used oil, mixing time, mixing speed and temperatures were studied as operating parameters. The performance on three estimated depended key parameters, namely the percentage of base oil recovered (Yield), percent of oil loss (POL), and the percent of sludge removal (PSR) were used to evaluate the efficiency of the employed binary solvent on extraction process. The best solvent to solvent ratio for binary system were 30:70 for Heavy Naph
... Show MoreIn the current endeavor, a new Schiff base of 14,15,34,35-tetrahydro-11H,31H-4,8-diaza-1,3(3,4)-ditriazola-2,6(1,4)-dibenzenacyclooctaphane-4,7-dien-15,35-dithione was synthesized. The new symmetrical Schiff base (Q) was employed as a ligand to produce new complexes comprising Co(II), Ni(II), Cu(II), Pd(II), and Pt(II) metal-ions at a ratio of 2:1 (Metal:ligand). There have been new ligands and their complexes validated by (FTIR), (UV-visible), 1H-NMR, 13C-NMR, CHNS, and FAA spectroscopy, Thermogravimetric analysis (TG), Molar conductivity, and Magnetic susceptibility. The photostabilization technique to enhance the polymer was also used. The ligand Q and its complexes were mixed in 0.5% w/w of polyvinyl chloride in tetrahydrofuran
... Show MoreCadmium sulfide photodetector was fabricated. The CdS nano
powder has been prepared by a chemical method and deposited as a
thin film on both silicon and porous p- type silicon substrates by spin
coating technique. Structural, morphological, optical and electrical
properties of the prepared CdS nano powder are studied. The X-ray
analysis shows that the obtained powder is CdS with predominantly
hexagonal phase. The Hall measurements show that the nano powder
is n-type with carrier concentration of about (-5.4×1010) cm-3. The
response time of fabricated detector was measured by illuminating
the sample with visible radiation and its value was 5.25 msec. The
specific detectivity of the fabricated det
The aim of this research is to study the effect of high concentrations of salts, pressure and temperature on the performance of the RO membrane with time. Four different (Na2CO3) concentrations (5000, 15000, 25000 and 35000) ppm and various pressures such as (1, 3 and 5) bars at different temperatures of the feed solution (i.e., 25, 35 and 45) ◦C were used in this work. It was found that, as the concentration of salt and feed temperatures increase, the rejection of the salt decrease. While the salt rejection of the membranes increases with increase of transmembrane pressure.