Light naphtha treatment was achieved over 0.3wt%Pt loaded-alumina, HY-zeolite and Zr/W/HY-zeolite catalysts at temperature rang of 240-370°C, hydrogen to hydrocarbon mole ratio of 1-4 0.75-3 wt/wt/hr, liquid hourly space velocity (LHSV) and at atmospheric pressure. The hydroconversion of light naphtha over Pt loaded catalyst shows two main reactions; hydrocracking and hydroisomerization reactions. The catalytic conversion of a light naphtha is greatly influenced by reaction temperature, LHSV, and catalyst function. Naphtha transformation (hyroisomerization, cracking and aromatization) increases with decreasing LHSV and increasing temperature except hydroisomerization activity increases with increasing of temperature till 300°C then began to decrease due to the formation of hydrocracking reaction. The investigation of Pt containing catalysts under study shows a very high hydrogenlysis activity , due to presence of metal component (i.e. Zr, W) which enhances the rate of paraffin isomerization and cracking.The hyroisomerization and the hydrocraking activities can be arranged as follows,. Pt/Zr/W/HY > Pt/HY > Pt/γ-Al2O3 The results showed that, Pt/γ-Al2O3 has higher activity for the direct dehydrogenation of C6 and C7 paraffin's present in naphtha to aromatics than Pt/HY and Pt/Zr/W/HY. This was due to pore volume catalyst ,the aromatics compounds increased as the pore volume increased
The aim of this study was to investigate the effectiveness of binary solvent for regeneration of spent lubricating oil by extraction-flocculation process. The regeneration was investigated by bench scale experiments by using locally provided solvents (Heavy Naphtha, n-Butanol, and iso-Butanol). Solvents to used oil, mixing time, mixing speed and temperatures were studied as operating parameters. The performance on three estimated depended key parameters, namely the percentage of base oil recovered (Yield), percent of oil loss (POL), and the percent of sludge removal (PSR) were used to evaluate the efficiency of the employed binary solvent on extraction process. The best solvent to solvent ratio for binary system were 30:70 for Heavy Naph
... Show MoreBackground: Dental implants act as infrastructure for fixed restoration to look like as a natural tooth. Osseointegration is a biological events and considered as a base for success of dental implant. The aim of this study is to evaluate the bond strength between bone and Ti implant coated with mixture of nano hydroxyapatite-chitosan-collagen compared with Ti implants coated with nano hydroxyapatite implanted in rabbit tibia, after different period of implantation time (two and six weeks) by torque removal test. Material and methods: 36 screws of commercially pure titanium; 8mm in length and 3mm diameter , 18 screws coated with mixture of nano hydroxyapatite-chitosan-collagen and18 screws coated with nano hydroxyapatite by dip coating. St
... Show MoreThe aim of this research is to study the effect of high concentrations of salts, pressure and temperature on the performance of the RO membrane with time. Four different (Na2CO3) concentrations (5000, 15000, 25000 and 35000) ppm and various pressures such as (1, 3 and 5) bars at different temperatures of the feed solution (i.e., 25, 35 and 45) ◦C were used in this work. It was found that, as the concentration of salt and feed temperatures increase, the rejection of the salt decrease. While the salt rejection of the membranes increases with increase of transmembrane pressure.
Cadmium sulfide photodetector was fabricated. The CdS nano
powder has been prepared by a chemical method and deposited as a
thin film on both silicon and porous p- type silicon substrates by spin
coating technique. Structural, morphological, optical and electrical
properties of the prepared CdS nano powder are studied. The X-ray
analysis shows that the obtained powder is CdS with predominantly
hexagonal phase. The Hall measurements show that the nano powder
is n-type with carrier concentration of about (-5.4×1010) cm-3. The
response time of fabricated detector was measured by illuminating
the sample with visible radiation and its value was 5.25 msec. The
specific detectivity of the fabricated det
Transformation and many other substitution methods have been used to solve non-linear differential fractional equations. In this present work, the homotopy perturbation method to solve the non-linear differential fractional equation with the help of He’s Polynomials is provided as the transformation plays an essential role in solving differential linear and non-linear equations. Here is the α-Sumudu technique to find the relevant results of the gas dynamics equation in fractional order. To calculate the non-linear fractional gas dynamical problem, a consumer method created on the new homotopy perturbation a-Sumudu transformation method (HP TM) is suggested. In the Caputo type, the derivative is evaluated. a-Sumudu homotopy pe
... Show More An experimental and computational study is conducted to analyze the thermal performance of heat sinks and to pick up more profound information in this imperative field in the electronic cooling. One important approach to improve the heat transfer on the air-side of the heat exchanger is to adjust the fin geometry. Experiments are conducted to explore the impact of the changing of diverse operational and geometrical parameters on the heat sink thermal
performance. The working fluid used is air. Operational parameters includes: air Reynolds number (from 23597 to 3848.9) and heat flux (from 3954 to 38357 W/m
2 ). Conformational parameters includes: change the direction of air flow and the area of conduct
The purpose of this paper is to depict the effect of adding a hydraulic accumulator to a hydraulic system. The experimental work includes using measuring devices with interface to measure the pressure and the vibration of the system directly by computer so as to show the effect of accumulator graphically for real conditions, also the effects of hydraulic accumulator for different applications
have been tested. A simulation analysis of the hydraulic control system using MATLAB.R2010b to study was made to study the stability of the system depending on the transfer function, to estimate the effect of adding the accumulator on stability of the system. A physical simulation test was made for the hydraulic system using MATLAB to show the ef