The design, synthesis, and characterization of a star shaped 2,4,6-tris-(4`-carboxyphenoxy)-1,3,5-triazine liquid crystalline with columnar discotic mesophase properties establish H-bond interactions with 3,5-dialkoxypyidine were reported. The structures of the synthesized compounds were actually determined by elementary analysis, and FT-IR, ¹HNMR, ¹³CNMR, and mass spectroscopy. The mesomorphic properties of these mesogens were examined using differential scanning calorimetry (DSC) and optical polarizing microscopy (OPM). The synthesized molecules exhibited enantiotropic hexagonal columnar liquid crystal, which depends for the H- bond complex in a 1:3 ratio.
A new family of nematic liquid crystal dendrimers derived from 3,5-dihydroxybenzoic acid were synthesized. The synthesis of the dendrimers compounds shows the influence of the dendritic core on the mesomorphic properties. The liquid crystalline properties were studied by polarizing optical microscopy (POM) equipped with a hot stage, the structures of the synthesized compounds characterized using FTIR and 1HNMR spectroscopy.
Objective: Schiff’s and Mannich bases of isatins are an important group of heterocyclic compounds which are of great importance in medicinal chemistry as antimicrobial agents. In the vision of these facts, new bis-Schiff bases and Mannich bases of isatins were synthesized. Methods: Three different bis-Schiff bases (3a-c) have been synthesized by reacting isatin, 5-fluoroisatin and 5-methoxy isatin with thiophene-2- carboxaldehyde using hydrazine hydrate to link between the carbonyl compounds, and then these bis- Schiff bases were condensed with two different secondary amines (piperidine and morpholine) separately, and formaldehyde to form the Mannich bases (4a-c and 5a-f), respectively. Results: The structures of the newly synthesized com
... Show MoreOur work included a synthesis of three new imine derivatives—1,3-thiazinan-4-one, 1,3-oxazinan-6-one and 1,3-oxazepin-4,7-dione—which contained an adamantyl fragment. These were produced via the condensation of the Schiff`s base (E)-N-(adamantan-1-yl)-1-(3-aryl)methanimine with 3-mercaptopropanoic acid; 3-chloropropanoic acid; and maleic, citraconic anhydride, respectively. These new imines were prepared via the condensation of adamantan-1-ylamine and 3-nitro-, 3-bromobenzaldehyde in n-BuOH. We obtained a good yield of products. FTIR, 1H NMR spectroscopy and C.H.N.S analysis were used to diagnostic the products. The molecular structure of (E)-N-(adamantan-1-yl
... Show MoreIn this study, aluminum alloyAA6061-T6 was joined by a hot press process with three types of material; polyamide PA 6.6 (nylon), 1% carbon nanotube/PA6.6 and 30% carbon fiber/PA6.6 composites. Three parameters were considered in the hot pressing; temperature (180, 200 and 220°C), pressure (2, 3, 4, 5 and 6 bar) and time of pressing (1, 2, 3, 4 and 5 minutes for 200ºC, and 0.25, 0.5, 0.75, 1 and 1.25 minutes for220ºC). Applied pressure has great effect on shear strength of the joint, corresponding to bonding time and temperature. Maximum shear strength was 8.89MPa obtained for PA6.6 at bonding conditions of 4 bar, 220ºC and 0.75 minute. For 30% carbon fiber/PA6,6 shear recorded was
In this study, detection of uricase production from Pseudomonas aeruginosa
isolates was done by applying colorimetric method, Uricase was purified from the
most potent isolate by precipitation using ammonium sulphate (80% saturation) then
purification was achieved using DEAE –Cellulose ion exchange and Sepharose 6B
gel filtration chromatography column, 16.4% of total enzyme was recovered with
specific activity 2337.5U/mg and 22.21folds of purification. Characterization of
uricase involved detection of optimal conditions for uricase activity, the maximal
activity was obtained at temperature 45ºC,while uricase appeared to be stable at
40ºC. Uricase showed optimal activity at pH 9 while pH stability was in the
A new ligand [N-(4-chlorobenzoyl amino) -thioxomethyl] valine (cbv) is synthesized by reaction of 4- chloro benzoyl iso thio cyanate with valine acid. The ligand is Characterized by elemental analysis ,FT-IR, and 13C 1H NMR spectra, some transition metals complex of this ligand were prepared and Characterized by FTIR , UV-Visible spectra , conductivity measurement's ,magnetic susceptibility , atomic absorption and determination of molar ratio (M:L), from results obtained , the following formula [M(cbv)2] where M+2 =Mn, Fe ,Co , Ni , Cu,Zn,Cd, and Hg and the proposed molecular structure for these complexes as tetrahedral geometry, except copper complex is have square planer geometry
(E)-2-(benzo[d]thiazol-2-yliazenyl)-4-methoxyaniline was synthesized by reaction the diazonium salt of 2-aminobenzothiazole with 4-methoxyaniline. Identified of the ligand by spectral techniques (UV-Vis, FTIR,1HNMR and LC-Mass) and microelemental analysis (C.H.N.S.O) are used to produce of the azo ligand. Complexes of (Co2+, Ni2+, Cu2+ and Zn2+) were synthesized and identified using atomic absorption of flame, elemental analysis, infrared and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied followed the mole ratio and continuous contrast methods, Beer's law followed during a concentration scope (1×10-4-3×10-4 mole/L). height molar absorptivity of compound solutions h
... Show More4-[(2-hydroxy-4,6-dimethylphenyl)diazenyl]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one has been readied by combination the diazonium salt of 4-aminoantipyrine with 3,5-dimethylphenol. Spectral studies ( FTIR, UV-Vis, 1H and 13CNMR) and microelemental analysis (C.H.N) are use to identified of the ligand. Complexes of some transition metals were performed as well depicted. The formation of complexes were characterized by using atomic absorption of flame, elemental analysis, infrared and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied followed the mole ratio and continuous contrast methods, Beer's law followed during a concentration scope (1×10-4 - 3×10-4 M/L). height m
... Show More