Because the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulat
... Show MoreIn this paper, we study some cases of a common fixed point theorem for classes of firmly nonexpansive and generalized nonexpansive maps. In addition, we establish that the Picard-Mann iteration is faster than Noor iteration and we used Noor iteration to find the solution of delay differential equation.
Rheumatoid arthritis is a chronic, progressive, inflammatory autoimmune disease of unidentified etiology, associated with articular, extra-articular and systemic manifestation that require long-standing treatment. Taking patient’s beliefs about the prescribed medication in consideration had been shown to be an essential factor that affects adherence of the patient in whom having positive beliefs is an essential for better adherence. The purpose of the current study was to measure beliefs about medicines among a sample of Iraqi patients with Rheumatoid arthritis and to determine possible association between this belief and some patient-certain factors. This study is a cross-sectional study carried out on 250 already diagnosed rheumatoid
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreGas and downhole water sink assisted gravity drainage (GDWS-AGD) is a promising gas-based enhanced oil recovery (EOR) process applicable for reservoirs associated with infinite aquifers. However, it can be costly to implement because it typically involves the drilling of multiple vertical gas-injection wells. The drilling and well-completion costs can be substantially reduced by using additional completions for gas injection in the oil production wells through the annulus positioned at the top of the reservoir. Multi-completion-GDWS-AGD (MC-GDWS-AGD) can be configured to include separate completions for gas injection, oil, and water production in individual wells. This study simulates