This paper proposes a novel meta-heuristic optimization algorithm called the fine-tuning meta-heuristic algorithm (FTMA) for solving global optimization problems. In this algorithm, the solutions are fine-tuned using the fundamental steps in meta-heuristic optimization, namely, exploration, exploitation, and randomization, in such a way that if one step improves the solution, then it is unnecessary to execute the remaining steps. The performance of the proposed FTMA has been compared with that of five other optimization algorithms over ten benchmark test functions. Nine of them are well-known and already exist in the literature, while the tenth one is proposed by the authors and introduced in this article. One test trial was shown to check the performance of each algorithm, and the other test for 30 trials to measure the statistical results of the performance of the proposed algorithm against the others. Results confirm that the proposed FTMA global optimization algorithm has a competing performance in comparison with its counterparts in terms of speed and evading the local minima.
Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.
Improving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application
In this study, a 3 mm thickness 7075-T6 aluminium alloy sheet was used in the friction stir welding process. Using the design of experiment to reduce the number of experiments and to obtain the optimum friction stir welding parameters by utilizing Taguchi technique based on the ultimate tensile test results. Orthogonal array of L9 (33) was used based on three numbers of the parameters and three levels for each parameter, where shoulder-workpiece interference depth (0.20, 0.25, and 0.3) mm, pin geometry (cylindrical thread flat end, cylindrical thread with 3 flat round end, cylindrical thread round end), and thread pitch (0.8, 1, and 1.2) mm) this technique executed by Minitab 17 software. The results showed th
... Show MoreIn this study, a one-dimensional model represented by Butler-Volmer-Monod (BVM) model was proposed to compute the anode overpotential and current density in a mediator-less MFC system. The system was fueled with various organic loadings of real field petroleum refinery oily sludge to optimize the favorable organic loading for biomass to operate the suggested system. The increase in each organic loading showed higher resistance to electrons transport to the anode represented by ohmic loss. On the contrary, both activation and mass transfer losses exhibited a noticeable decrement upon the increased organic loadings. However, current density was improved throughout all increased loads achieving a maximum current density of 5.2 A/m3
... Show MorePhenol is one of the worst-damaging organic pollutants, and it produces a variety of very poisonous organic intermediates, thus it is important to find efficient ways to eliminate it. One of the promising techniques is sonoelectrochemical processing. However, the type of electrodes, removal efficiency, and process cost are the biggest challenges. The main goal of the present study is to investigate the removal of phenol by a sonoelectrochemical process with different anodes, such as graphite, stainless steel, and titanium. The best anode performance was optimized by using the Taguchi approach with an L16 orthogonal array. the degradation of phenol sonoelectrochemically was investigated with three process parameters: current de
... Show MoreSummary The aim of this study is the evaluation the resistance of S. marcescence obtained from soil and water to metals chlorides (Zn+2, Hg+2, Fe+2, Al+3, and Pb+2). Four isolates, identified as Serratia marcescence and S. marcescena (S4) were selected for this study according to their resistance to five heavy metals. The ability of S. marcescena (S4) to grow in different concentrations of metals chloride (200-1200 µg/ml) was tested, the highest concentration that S. marcescence (S4) tolerate was 1000 µg/ml for Zn+2, Hg+2, Fe+2, AL+3, pb+2 and 300 µg/ml for Hg+2 through 24 hrs incubation at 37 Co. The effects of temperature and pH on bacteria growth during 72 hrs were also studied. S. marcescence (S4) was affected by ZnCl2, PbCl2, FeC12
... Show More
The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the
This study was attempted to determine optimum conditions, for Glutathione s-Transferase enzyme, in sera of three groups diabetic patients type1 depending on duration of disease without complications compared with control group. The aim of this study was to find optimum conditions were determined such as (pH, Substrate Concentration, Temperature, Incubation time, Enzyme concentration, and effect of(0.15M)(0.25M) of mono divalent compounds). And to find the kinetics parameters in the three groups of diabetic patients when compared with control. It was found optimum pH(8.5,4.5,2.5,6.5).Temperatures(20cº,40cº,50cº,30cº). Incubation times (7min, 4min, 4min, 5min) substrate concentrations (12µl, 10µl, 5µl, 10µl) enzyme concentra
... Show More