This paper proposes a novel meta-heuristic optimization algorithm called the fine-tuning meta-heuristic algorithm (FTMA) for solving global optimization problems. In this algorithm, the solutions are fine-tuned using the fundamental steps in meta-heuristic optimization, namely, exploration, exploitation, and randomization, in such a way that if one step improves the solution, then it is unnecessary to execute the remaining steps. The performance of the proposed FTMA has been compared with that of five other optimization algorithms over ten benchmark test functions. Nine of them are well-known and already exist in the literature, while the tenth one is proposed by the authors and introduced in this article. One test trial was shown to check the performance of each algorithm, and the other test for 30 trials to measure the statistical results of the performance of the proposed algorithm against the others. Results confirm that the proposed FTMA global optimization algorithm has a competing performance in comparison with its counterparts in terms of speed and evading the local minima.
Automatic Programming Assessment (APA) has been gaining lots of attention among researchers mainly to support automated grading and marking of students’ programming assignments or exercises systematically. APA is commonly identified as a method that can enhance accuracy, efficiency and consistency as well as providing instant feedback on students’ programming solutions. In achieving APA, test data generation process is very important so as to perform a dynamic testing on students’ assignment. In software testing field, many researches that focus on test data generation have demonstrated the successful of adoption of Meta-Heuristic Search Techniques (MHST) so as to enhance the procedure of deriving adequate test data for efficient t
... Show MoreAbstract
This research presents a on-line cognitive tuning control algorithm for the nonlinear controller of path-tracking for dynamic wheeled mobile robot to stabilize and follow a continuous reference path with minimum tracking pose error. The goal of the proposed structure of a hybrid (Bees-PSO) algorithm is to find and tune the values of the control gains of the nonlinear (neural and back-stepping method) controllers as a simple on-line with fast tuning techniques in order to obtain the best torques actions of the wheels for the cart mobile robot from the proposed two controllers. Simulation results (Matlab Package 2012a) show that the nonlinear neural controller with hybrid Bees-PSO cognitive algorithm is m
... Show MoreNowadays, the mobile communication networks have become a consistent part of our everyday life by transforming huge amount of data through communicating devices, that leads to new challenges. According to the Cisco Networking Index, more than 29.3 billion networked devices will be connected to the network during the year 2023. It is obvious that the existing infrastructures in current networks will not be able to support all the generated data due to the bandwidth limits, processing and transmission overhead. To cope with these issues, future mobile communication networks must achieve high requirements to reduce the amount of transferred data, decrease latency and computation costs. One of the essential challenging tasks in this subject
... Show MoreMining association rules is a popular and well-studied method of data mining tasks whose primary aim is the discovers of the correlation among sets of items in the transactional databases. However, generating high- quality association rules in a reasonable time from a given database has been considered as an important and challenging problem, especially with the fast increasing in database's size. Many algorithms for association rules mining have been already proposed with promosing results. In this paper, a new association rules mining algorithm based on Bees Swarm Optimization metaheuristic named Modified Bees Swarm Optimization for Association Rules Mining (MBSO-ARM) algorithm is proposed. Results show that the proposed algorithm can
... Show MoreAbstract
In this work, two algorithms of Metaheuristic algorithms were hybridized. The first is Invasive Weed Optimization algorithm (IWO) it is a numerical stochastic optimization algorithm and the second is Whale Optimization Algorithm (WOA) it is an algorithm based on the intelligence of swarms and community intelligence. Invasive Weed Optimization Algorithm (IWO) is an algorithm inspired by nature and specifically from the colonizing weeds behavior of weeds, first proposed in 2006 by Mehrabian and Lucas. Due to their strength and adaptability, weeds pose a serious threat to cultivated plants, making them a threat to the cultivation process. The behavior of these weeds has been simulated and used in Invas
... Show MoreOptimizing the Access Point (AP) deployment is of great importance in wireless applications owing the requirement to provide efficient and cost-effective communication. Highly targeted by many researchers and academic industries, Quality of Service (QOS) is an important primary parameter and objective in mind along with AP placement and overall publishing cost. This study proposes and investigates a multi-level optimization algorithm based on Binary Particle Swarm Optimization (BPSO). It aims to an optimal multi-floor AP placement with effective coverage that makes it more capable of supporting QOS and cost effectiveness. Five pairs (coverage, AP placement) of weights, signal threshol