Preferred Language
Articles
/
jxf2UZEBVTCNdQwCrZTk
Optimizing Task Scheduling and Resource Allocation in Computing Environments using Metaheuristic Methods

Optimizing system performance in dynamic and heterogeneous environments and the efficient management of computational tasks are crucial. This paper therefore looks at task scheduling and resource allocation algorithms in some depth. The work evaluates five algorithms: Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Firefly Algorithm (FA) and Simulated Annealing (SA) across various workloads achieved by varying the task-to-node ratio. The paper identifies Finish Time and Deadline as two key performance metrics for gauging the efficacy of an algorithm, and a comprehensive investigation of the behaviors of these algorithms across different workloads was carried out. Results from the experiments reveal unique patterns in algorithmic behaviors by workload. In the 15-task and 5-node scenario, the GA and PSO algorithms outclass all others, completing 100 percent of tasks before deadlines, Task 5 was a bane to the ACO algorithm. The study proposes a more extensive system that promotes an adaptive algorithmic approach based on workload characteristics. Numerically, the GA and PSO algorithms triumphed completing 100 percent of tasks before their deadlines in the face of 10 tasks and 5 nodes, while the ACO algorithm stumbled on certain tasks. As it is stated in the study, The above-mentioned system offers an integrated approach to ill-structured problem of task scheduling and resource allocation. It offers an intelligent and aggressive scheduling scheme that runs asynchronously when a higher number of tasks is submitted for the completion in addition to those dynamically aborts whenever system load and utilization cascade excessively. The proposed design seems like full-fledged solution over project scheduling or resource allocation issues. It highlights a detailed method of the choice of algorithms based on semantic features, aiming at flexibility. Effects of producing quantifiable statistical results from the experiments on performance empirically demonstrate each algorithm performed under various settings.

Scopus Crossref
View Publication
Publication Date
Sun Jan 10 2016
Journal Name
British Journal Of Applied Science & Technology
Illumination - Invariant Facial Components Extraction Using Adaptive Contrast Enhancement Methods

The process of accurate localization of the basic components of human faces (i.e., eyebrows, eyes, nose, mouth, etc.) from images is an important step in face processing techniques like face tracking, facial expression recognition or face recognition. However, it is a challenging task due to the variations in scale, orientation, pose, facial expressions, partial occlusions and lighting conditions. In the current paper, a scheme includes the method of three-hierarchal stages for facial components extraction is presented; it works regardless of illumination variance. Adaptive linear contrast enhancement methods like gamma correction and contrast stretching are used to simulate the variance in light condition among images. As testing material

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Using Some Robust Methods For Handling the Problem of Multicollinearity

The multiple linear regression model is an important regression model that has attracted many researchers in different fields including applied mathematics, business, medicine, and social sciences , Linear regression models involving a large number of independent variables are poorly performing due to large variation and lead to inaccurate conclusions , One of the most important problems in the regression analysis is the multicollinearity Problem, which is considered one of the most important problems that has become known to many researchers  , As well as their effects on the multiple linear regression model, In addition to multicollinearity, the problem of outliers in data is one of the difficulties in constructing the reg

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
Image Georeferencing using Artificial Neural Network Compared with Classical Methods

Georeferencing process is one of the most important prerequisites for various geomatics applications; for example, photogrammetry, laser scan analysis, remotely sensing, spatial and descriptive data collection, and others. Georeferencing mostly involves the transformation of coordinates obtained from images that are inhomogeneous due to accuracy differences. The georeferencing depends on image resolution and accuracy level of measurements of reference points ground coordinates.  Accordingly, this study discusses the subject of coordinate’s transformation from the image to the global coordinates system (WGS84) to find a suitable method that provides more accurate results. In this study, the Artificial Neural Network (ANN) method wa

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Processing of Polymers Stress Relaxation Curves Using Machine Learning Methods

Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Drag Reduction Using Passive Methods on KIA PRIDE Car Model

An experimental study on a KIA pride (SAIPA 131) car model with scale of 1:14 in the wind tunnel was made beside the real car tests. Some of the modifications to passive flow control which are (vortex generator, spoiler and slice diffuser) were added to the car to reduce the drag force which its undesirable characteristic that increase fuel consumption and exhaust toxic gases. Two types of calculations were used to determine the drag force acting on the car body. Firstly, is by the integrating the values of pressure recorded along the pressure taps (for the wind tunnel and the real car testing), secondly, is by using one component balance device (wind tunnel testing) to measure the force. The results show that, the avera

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Feb 18 2019
Journal Name
Iraqi Journal Of Physics
Different methods for characterizing surface roughness using laser speckle technique

In this work, results from an optical technique (laser speckle technique) for measuring surface roughness was done by using statistical properties of speckle pattern from the point of view of computer image texture analysis. Four calibration relationships were used to cover wide range of measurement with the same laser speckle technique. The first one is based on intensity contrast of the speckle, the second is based on analysis of speckle binary image,  the third is on size of speckle pattern spot, and the latest one is based on characterization of the energy feature of the gray level co-occurrence matrices for the speckle pattern. By these calibration relationships surface roughness of an object surface can be evaluated within the

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Mar 26 2023
Journal Name
Wasit Journal Of Pure Sciences
Covid-19 Prediction using Machine Learning Methods: An Article Review

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Select the optimal project by using two methods of analytic hierarchy and goal programming

      The aim of this research is to solve a real problem in the Department of Economy and Investment in the Martyrs establishment, which is the selection of the optimal project through specific criteria by experts in the same department using a combined mathematical model for the two methods of analytic hierarchy process and goal programming, where a mathematical model for goal programming was built that takes into consideration the priorities of the goal criteria by the decision-maker to reach the best solution that meets all the objectives, whose importance was determined by the hierarchical analysis process. The most important result of this research is the selection of the second pro

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Dec 06 2021
Journal Name
Iraqi Journal Of Science
Detecting and Monitoring the Vegetal Cover of Karbala Province (Iraq) Using Change Detection Methods

Karbala province was one of the most important areas in Iraq and considered an
economic resource of vegetation such as trees of fruits, sieve and other vegetation.
This research aimed to utilize change detection for investigating the current
vegetation cover at last three decay. The main objectives of this research are collect
a group of studied area (Karbala province) satellite images in sequence time for
the same area, these image captured by Landsat (TM 1995, ETM+ 2005 and
Landsat 8 OLI (Operational Land Imager) 2015. Preprocessing such as atmosphere
correction and rectification has been done. Mosaic model between the parts of
studied area was performing. Gap filling consider being very important step has
be

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
International Journal Of Research In Social Sciences & Humanities
The Effect of Cloud Computing in Facing the Challenges of Applying IFRSs in Iraqi Private Banks

The research aims to explain the role of cloud computing technology in facilitating the application of international financial reporting standards in Iraqi banks, by preparing a checklist that included a set of paragraphs to measure the level of application of IFRSs. In those banks and then the need to use cloud computing technology, and the researchers reached a set of conclusions, including, that cloud computing technology has a role in facilitating the application of international financial reporting standards in the banks, the research sample, because of the ease it provides in preparing and saving accounting information and the possibility of accessing it in any time and from any place where the Internet service is available. T

... Show More
Crossref
View Publication