Hierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutilized crossbar regions and supports rapid on-chip training within two clock cycles. This research also leverages plasticity mechanisms such as neurogenesis and homeostatic intrinsic plasticity to strengthen the robustness and performance of the SP. The proposed design is benchmarked for image recognition tasks using Modified National Institute of Standards and Technology (MNIST) and Yale faces datasets, and is evaluated using different metrics including entropy, sparseness, and noise robustness. Detailed power analysis at different stages of the SP operations is performed to demonstrate the suitability for mobile platforms.
Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet
... Show MoreMany undergraduate learners at English departments who study English as a foreign language are unable to speak and use language correctly in their post -graduate careers. This problem can be attributed to certain difficulties, which they faced throughout their education years that hinder their endeavors to learn. Therefore, this study aims to discover the main difficulties faced by EFL students in language learning and test the difficulty variable according to gender and college variables then find suitable solutions for enhancing learning. A questionnaire with 15 items and 5 scales were used to help in discovering the difficulties. The questionnaire was distributed to the selected sample of study wh
... Show MoreImitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co
... Show MoreMany undergraduate learners at English departments who study English as a foreign language are unable to speak and use language correctly in their post -graduate careers. This problem can be attributed to certain difficulties, which they faced throughout their education years that hinder their endeavors to learn. Therefore, this study aims to discover the main difficulties faced by EFL students in language learning and test the difficulty variable according to gender and college variables then find suitable solutions for enhancing learning. A questionnaire with 15 items and 5 scales were used to help in discovering the difficulties. The questionnaire was distributed to the selected sample of study which consists of 90 (male and female) stud
... Show MoreThe aim of the present research is to identify the test wisdom and the engagement with learning and psychological tension among postgraduate students at the University of Samarra according to the variables of the department, gender, age, and whether students are employee or non-employee. The study also attempts to identify the relationship between the test wisdom and the engagement with learning and psychological tension. The research sample consisted of (75) postgraduate students randomly selected from college of Education. The researcher applied the test–wisdom of (Mellman & Ebel) and the scale of engagement with learning preparation by (Al-zaabi 2013). In addition, the researcher used the list of the psychological stress of (Abu
... Show MoreThis research is a study of the difficulties of learning the Arabic language that faces Arabic language learners in the Kurdistan Region, by revealing its types and forms, which can be classified into two categories:
The first type has difficulties related to the educational system, the source of which is the Arabic language itself, the Arabic teacher or the learner studying the Arabic language or the educational curriculum, i.e. educational materials, or the educational process, i.e. the method used in teaching.
The second type: general difficulties related to the political aspect, the source of which is the policy of the Kurdistan Regional Government in marginalizing the Arabic language and replacing the forefront of th
... Show MoreBackground: Measuring implant stability is an important issue in predicting treatment success. Dental implant stability is usually measured through resonance frequency analysis (RFA). Osstell® RFA devices can be used with transducers (Smartpeg™) that correspond to the implants used as well as with transducers designed for application with Penguin® RFA devices (Multipeg™). Aims: This study aims to assess the reliability of a MultiPeg™ transducer with an Osstell® device in measuring dental implant stability. Materials and Methods: Sixteen healthy participants who required dental implant treatment were enrolled in this study. Implant stability was measured by using an Osstell® device with two transducers, namely, Smartpeg™ and M
... Show More