The wound healing process is incredibly intricate, consisting of a series of cellular activities. Although, this complex process has the potential to degenerate and result in chronic wound problems that are resistant to biological healing mechanisms. Nanoparticles can help to reduce inflammation, promote tissue regeneration, and accelerate wound healing. The proteolytic enzymes are believed to break down proteins and other molecules that can cause inflammation and impede the healing process. Wound was created in vivo using adult mice, and by taking blood samples the hematological parameters were evaluated to detected the effects of bromelain, silver nanoparticles and Br-AgNPs. The results shows an increased in white blood cells WBC, RBC, MCV and MCH while platelets were decreased.Overall, the use of proteolytic enzyme loaded on silver nanoparticles has been found to be beneficial for wound healing and may provide an effective alternative to traditional treatments.
In the current study, synthesis and characterization of silver nanoparticles (AgNPs) before and after functionalization with ampicillin antibiotic and their application as anti-pathogenic agents towards bacteria were investigated. AgNPs were synthesized by a green method from AgNO3 solution with glucose subjected to microwave radiation. Characterization of the nanoparticles was conducted using UV-Vis spectroscopy, scanning electron microscopy (SEM), zeta potential determination and Fourier transform infrared (FTIR) spectroscopy. From SEM analysis, the typical silver nanoparticle particle size was found to be 30 nm and Zeta potential measurements gave information about particle stability. Analysis of FTIR patterns and UV-VIS spectroscopy con
... Show MoreNowadays nanoparticles have widespread application in various industriesbecause of their special and unique features, there are many studies in sideeffects of nanomaterial. This study done by 40 white female mice withevery other day intraperitoneally injection of low and high doses of both ofZnO kg of body weight) and FeOnanoparticles (5 and 40 mg/kg). After a 15 days period, the mice weresacrificed and blood samples were collected for hormone analysis, andtissue samples for morphometric studies.Statistical Analysis shows significant differences in LH, Estrogen,Progesterone hormone levels between groups, while there are insignificantdifferences in Follicle stimulating hormone (FSH) level between thegroups compared with its level in
... Show MoreIn this work, wide band range photo detector operating in UV, Visible and IR was fabricated using carbon nanotubes (MWCNTs, SWCNTs) decorated with silver nanoparticles (Ag NPs). Silicon was used as a substrate to deposited CNTs/Ag NPs by the drop casting technique. Polyamide nylon polymer was used to coat CNTs/Ag NPs to enhance the photo-response of the detector. The electro-exploding wire technology was used to synthesize Ag NPs. Good dispersion of silver NPs achieved by a simple chemistry process on the surface of CNTs. The optical, structure and electrical characteristic of CNTs decorated with Ag NPs were characterized by X-Ray diffraction and Field Emission Scanning Electron Microscopy. X-ray diffra
... Show MoreDate palm silver nanoparticles are a green synthesis method used as antibacterial agents. Today,
there is a considerable interest in it because it is safe, nontoxic, low costly and ecofriendly. Biofilm bacteria
existing in marketed local milk is at highly risk on population health and may be life-threatening as most
biofilm-forming bacteria are multidrug resistance. The goal of current study is to eradicate biofilm-forming
bacteria by alternative treatment green synthesis silver nanoparticles. The biofilm formation by bacterial
isolates was detected by Congo red method. The silver nanoparticles were prepared from date palm
(khestawy) fruit extract. The formed nanoparticles were characterized with UV-Vis
In the current research, an eco-biosynthesis method for synthesizing silver nanoparticles (AgNPs) is reported using thymus vulgaris leaves (T. vulgaris) extracts. The optical and structural properties of the nanoparticles is determined using UV-visible, x-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). In addition, the synthesis factors such as the temperature, the molar ratio of silver nitride and thymus vulgaris leaves extract have been investigated. The XRD pattern presented higher intensity for the five characteristic peaks of silver. FESEM images for same samples indicated that the particle size was distributed between 24-56 nm. In addition, it’s observed the formation of some aggregated Ag particles
... Show MoreThe extract of fig fruit has shown significant medical usefulness in various fields. The entrance of nanotechnology into the field of medicinal and pharmacology has shown remarkable advantages. Plants contain diverse molecules thatcan reduce metals, and provide a safe, eco-friendly approach for synthesizing nanoparticles. Iron oxide nanoparticles (IONPs) have been reported to possess an antimicrobial effect against some strains of bacteria and moulds. We have aimed to synthesize IONPs from fig fruit extract and investigate the influence of fig extract and IONPs in wound healing of mice. UV-Vis spectroscopy, X-ray diffraction (XRD), and field emission scanning electron microscopy were used to characterize the IONPs that were produced
... Show MoreThe present research included synthesis of silver nanoparticle from(1*10-3,1*10-4 and1*10-5) M aqueous AgNO3 solution through the extract of M.parviflora reducing agent. In the process of synthesizing silver nanoparticles we detected a rapid reduction of silver ions leading to the formation of stable crystalline silver nanoparticles in the solution.
The purpose of this study to synthesize and characterize silver nanoparticles using phenolic compounds obtained from Camellia sinensis, to test the antibacterial properties of biosynthesized nanoparticles on the formation of biofilms in multidrug-resistant Pseudomonas aeruginosa. Ten isolates of P. aeruginosa were obtained from the Genetic Engineering and Biotechnology Institute laboratories of the University of Baghdad. By using the VITEK-2 system and culturing the isolates on cetrimide agar, the diagnosis was confirmed. Camellia sinensis silver nanoparticles (CAgNPs) were created using an extract of the plant's aqueous and methanolic leaves. Based on the results of the nanoparticle synthesis, spherical nanoparticles that may be single or
... Show More