In This paper, we introduce the associated graphs of commutative KU-algebra. Firstly, we define the KU-graph which is determined by all the elements of commutative KU-algebra as vertices. Secondly, the graph of equivalence classes of commutative KU-algebra is studied and several examples are presented. Also, by using the definition of graph folding, we prove that the graph of equivalence classes and the graph folding of commutative KU-algebra are the same, where the graph is complete bipartite graph.
This dissertation depends on study of the topological structure in graph theory as well as introduce some concerning concepts, and generalization them into new topological spaces constructed using elements of graph. Thus, it is required presenting some theorems, propositions, and corollaries that are available in resources and proof which are not available. Moreover, studying some relationships between many concepts and examining their equivalence property like locally connectedness, convexity, intervals, and compactness. In addition, introducing the concepts of weaker separation axioms in α-topological spaces than the standard once like, α-feebly Hausdorff, α-feebly regular, and α-feebly normal and studying their properties. Furthermor
... Show MoreThe aim of this paper is to introduce the notion of hyper fuzzy AT-ideals on hyper AT-algebra. Also, hyper fuzzy AT-subalgebras and fuzzy hyper AT-ideal of hyper AT-algebras are studied. We study on the fuzzy theory of hyper AT-subalgebras and hyper AT-ideal of hyper AT-algebras. Furthermore, the fuzzy set theory of the (weak, strong, s-weak) hyper fuzzy ATideals in hyper AT-algebras are applied and the relations among them are obtained.
We introduce the notion of interval value fuzzy ideal of TM-algebra as a generalization of a fuzzy ideal of TM-algebra and investigate some basic properties. Interval value fuzzy ideals and T-ideals are defined and several examples are presented. The relation between interval value fuzzy ideal and fuzzy T-ideal is studied. Abstract We introduce the notion of interval value fuzzy ideal of TM-algebra as a generalization of a fuzzy ideal of TM-algebra and investigate some basic properties. Interval value fuzzy ideals and T- ideals are defined and several examples are presented. The relation between interval value fuzzy ideal and fuzzy T-ideal is studied.
In this paper, we define a cubic positive implicative-ideal, a cubic implicative-ideal and a cubic commutative-ideal of a semigroup in KU-algebra as a generalization of a fuzzy (positive implicative-ideal, an implicative-ideal and a commutative-ideal) of a semigroup in KU-algebra. Some relations between these types of cubic ideals are discussed. Also, some important properties of these ideals are studied. Finally, some important theories are discussed. It is proved that every cubic commutative-ideal, cubic positive implicative-ideal, and cubic implicative-ideal are a cubic ideal, but not conversely. Also, we show that if Θ is a cubic positive implicative-ideal and a cubic commutative-ideal then Θ is a cubic implicative-ideal. Some example
... Show MoreLet A be a unital algebra, a Banach algebra module M is strongly fully stable Banach A-module relative to ideal K of A, if for every submodule N of M and for each multiplier θ : N → M such that θ(N) ⊆ N ∩ KM. In this paper, we adopt the concept of strongly fully stable Banach Algebra modules relative to an ideal which generalizes that of fully stable Banach Algebra modules and we study the properties and characterizations of strongly fully stable Banach A-module relative to ideal K of A.
Data security is an important component of data communication and transmission systems. Its main role is to keep sensitive information safe and integrated from the sender to the receiver. The proposed system aims to secure text messages through two security principles encryption and steganography. The system produced a novel method for encryption using graph theory properties; it formed a graph from a password to generate an encryption key as a weight matrix of that graph and invested the Least Significant Bit (LSB) method for hiding the encrypted message in a colored image within a green component. Practical experiments of (perceptibility, capacity, and robustness) were calculated using similarity measures like PSNR, MSE, and
... Show MoreIn this paper is to introduce the concept of hyper AT-algebras is a generalization of AT-algebras and study a hyper structure AT-algebra and investigate some of its properties. “Also, hyper AT-subalgebras and hyper AT-ideal of hyper AT-algebras are studied. We study on the fuzzy theory of hyper AT-ideal of hyper AT-algebras hyper AT-algebra”. “We study homomorphism of hyper AT-algebras which are a common generalization of AT-algebras.
We have studied some types of ideals in a KU-semigroup by using the concept of a bipolar fuzzy set. Bipolar fuzzy S-ideals and bipolar fuzzy k-ideals are introduced, and some properties are investigated. Also, some relations between a bipolar fuzzy k-ideal and k-ideal are discussed. Moreover, a bipolar fuzzy k-ideal under homomorphism and the product of two bipolar fuzzy k-ideals are studied.
In this paper, the concept of a hyper structure KU-algebra is introduced and some related properties are investigated. Also, some types of hyper KU-algebras are studied and the relationship between them is stated. Then a hyper KU-ideal of a hyper structure KU-algebra is studied and a few properties are obtained. Furthermore, the notion of a homomorphism is discussed.
The research is an article that teaches some classes of fully stable Banach - Å modules. By using Unital algebra studies the properties and characterizations of all classes of fully stable Banach - Å modules. All the results are existing, and they've been listed to complete the requested information.