In This paper, we introduce the associated graphs of commutative KU-algebra. Firstly, we define the KU-graph which is determined by all the elements of commutative KU-algebra as vertices. Secondly, the graph of equivalence classes of commutative KU-algebra is studied and several examples are presented. Also, by using the definition of graph folding, we prove that the graph of equivalence classes and the graph folding of commutative KU-algebra are the same, where the graph is complete bipartite graph.
In this paper, the concept of fully stable Banach Algebra modules relative to an ideal has been introduced. Let A be an algebra, X is called fully stable Banach A-module relative to ideal K of A, if for every submodule Y of X and for each multiplier ?:Y?X such that ?(Y)?Y+KX. Their properties and other characterizations for this concept have been studied.
In this paper, we introduce the concept of Jordan –algebra, special Jordan –algebra and triple –homomorphisms. We also introduce Bi - –derivations and Annihilator of Jordan algebra. Finally, we study the triple –homomorphisms and Bi - –derivations on Jordan algebra.
Let be any group with identity element (e) . A subgroup intersection graph of a subset is the Graph with V ( ) = - e and two separate peaks c and d contiguous for c and d if and only if , Where is a Periodic subset of resulting from . We find some topological indicators in this paper and Multi-border (Hosoya and Schultz) of , where , is aprime number.
In this work, the study of corona domination in graphs is carried over which was initially proposed by G. Mahadevan et al. Let be a simple graph. A dominating set S of a graph is said to be a corona-dominating set if every vertex in is either a pendant vertex or a support vertex. The minimum cardinality among all corona-dominating sets is called the corona-domination number and is denoted by (i.e) . In this work, the exact value of the corona domination number for some specific types of graphs are given. Also, some results on the corona domination number for some classes of graphs are obtained and the method used in this paper is a well-known number theory concept with some modification this method can also be applied to obt
... Show MoreThis paper introduces some properties of separation axioms called α -feeble regular and α -feeble normal spaces (which are weaker than the usual axioms) by using elements of graph which are the essential parts of our α -topological spaces that we study them. Also, it presents some dependent concepts and studies their properties and some relationships between them.
Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on
... Show MoreLoanwords are the words transferred from one language to another, which become essential part of the borrowing language. The loanwords have come from the source language to the recipient language because of many reasons. Detecting these loanwords is complicated task due to that there are no standard specifications for transferring words between languages and hence low accuracy. This work tries to enhance this accuracy of detecting loanwords between Turkish and Arabic language as a case study. In this paper, the proposed system contributes to find all possible loanwords using any set of characters either alphabetically or randomly arranged. Then, it processes the distortion in the pronunciation, and solves the problem of the missing lette
... Show MoreGroup action on the projective space PG(3,q) is a method which can be used to construct some geometric objects for example cap. We constructed new caps in PG(3,13) of degrees 2, 3, 4, 7,14 and sizes 2, 4, 5, 7, 10, 14, 17, 20, 28, 34, 35, 68, 70, 85, 119, 140, 170, 238, 340, 476, 595, 1190. Then the incomplete caps are extended to complete caps.
Inspite of the renovation and development that occurred on the
mathematics curricula and its teaching styles (methods), the teaching methods and the evaluation styles that the teachers of the country
follow are still traditionaL It depends on the normal distribution approach and the principle of individual differences among students in
addition the traditional tests that are used to evaluate student achievement are built on standard-referenced system. These types of tests focus on comparing the student's performance with his peers'
performance. The limitary of this type of evaluation in diagnosing the
students' acquisition of the stu
... Show MoreThis paper is concerned with the study of the T-norms and the quantum logic functions on BL-algebra, respectively, along with their association with the classical probability space. The proposed constructions depend on demonstrating each type of the T-norms with respect to the basic probability of binary operation. On the other hand, we showed each quantum logic function with respect to some binary operations in probability space, such as intersection, union, and symmetric difference. Finally, we demonstrated the main results that explain the relationships among the T-norms and quantum logic functions. In order to show those relations and their related properties, different examples were built.