The importance of this research has been to rationalize the cost of producing maize seeds through the followers of modern techniques and methods in agricultural activities such as genetic engineering for increasing production efficiency of maize seeds as well as the importance of calculating seed cost rationalization through the ABC system and thus rationalizing government spending. The research is based on one hypothesis in two ways that the use of genetic engineering on maize seeds works to: one - increase production efficiency of seeds and savings in agricultural inputs. 2. Rationalize the costs of examining and planting maize seeds. In order to calculate the costs will be based on the cost system based on activities ABC. The research reached a number of conclusions, the most important: The application of genetic engineering on the seeds of maize productivity efficiency as well as its contribution to reduce the costs of testing and planting seeds, the needs of the market and the farmers of seed, which is a raw material involved in agriculture. The research led to a number of recommendations, including: Genetic engineering as a means to provide seeds in sufficient quantities to meet the needs of the market and farmers of seeds. The importance of this research has been to rationalization the cost of producing maize seeds through the followers of modern techniques and methods in agricultural activities such as genetic engineering for the purpose of increasing production efficiency of maize seeds as well as the importance of calculating seed cost rationalization through the ABC system and thus rationalizing government spending. The research is based on a single hypothesis that the use of genetic engineering on maize seeds works to increase production efficiency of seeds and savings in agricultural inputs, calculation of rationalization through the system of activity basis cost ABC The research reached a number of conclusions, the most important of which The application of genetic engineering to maize seeds achieves productivity efficiency to meet the needs of the market and farmers of seed, which is a raw material involved in agriculture. The research led to a number of recommendations, including: Genetic engineering as a means to provide seeds in sufficient quantities to meet the needs of the market and farmers of seeds.
The concept of fully pseudo stable Banach Algebra-module (Banach A-module) which is the generalization of fully stable Banach A-module has been introduced. In this paper we study some properties of fully stable Banach A-module and another characterization of fully pseudo stable Banach A-module has been given.
Background: Alcohol remains the single most significant cause of liver disease throughout the Western world, responsible for between 40 and 80% of cases of cirrhosis in different countries. Many of the factors underlying the development of alcoholic liver injury remain unknown, and significant questions remain about the value of even very basic therapeutic strategies.
Patients and Methods: In a cross sectional study, 113 alcoholic patients with evidence of liver disease in the absence of other significant etiology attending the Gastoenterorology and Hepatology Teaching Hospital between December 2001 and December 2003 were studied for the hematological and biochemical spectrum of alcoholic liver disease in
The comparison of double informative priors which are assumed for the reliability function of Pareto type I distribution. To estimate the reliability function of Pareto type I distribution by using Bayes estimation, will be used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of Pareto type I distribution . Assuming distribution of three double prior’s chi- gamma squared distribution, gamma - erlang distribution, and erlang- exponential distribution as double priors. The results of the derivaties of these estimators under the squared error loss function with two different double priors. Using the simulation technique, to compare the performance for
... Show More