Preferred Language
Articles
/
jpgiafs-1054
The Role Talents Management in Consolidating Organizational Learning Process: An Applied Study at the Yemeni General Telecommunications Corporation
...Show More Authors

This study aimed at accounting for the role of talents management in consolidating organizational learning process at the Yemeni General Corporation For telecommunication. To achieve the objective of the study, the researcher designed a questionnaire and administered it. The sample of the study consisted of (166) employees (General Manager, Manager and Department Head). They were selected randomly out of a total Population of (291) employees during the Year 2019. The descriptive analytic approach was used t reach conclusions.

The finding of the study revealed existence of effect of talents management dimensions, all together and alone, (talents polarization, talents development, talents maintenance and managing talents, performance) in consolidating organizational process.

 The researcher recommended the leaders of the institution to practise talents organizational learning at the institution by supporting such behaviours and creating environment for talent employees.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
Deep Convolutional Neural Network Architecture to Detect COVID-19 from Chest X-Ray Images
...Show More Authors

      Today, the world is living in a time of epidemic diseases that spread unnaturally and infect and kill millions of people worldwide. The COVID-19 virus, which is one of the most well-known epidemic diseases currently spreading, has killed more than six million people as of May 2022. The World Health Organization (WHO) declared the 2019 coronavirus disease (COVID-19) after an outbreak of SARS-CoV-2 infection. COVID-19 is a severe and potentially fatal respiratory disease caused by the SARS-CoV-2 virus, which was first noticed at the end of 2019 in Wuhan city. Artificial intelligence plays a meaningful role in analyzing medical images and giving accurate results that serve healthcare workers, especially X-ray images, which are co

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (6)
Scopus Crossref
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
Automatic Diagnosis of Coronavirus Using Conditional Generative Adversarial Network (CGAN)
...Show More Authors

     A global pandemic has emerged as a result of the widespread coronavirus disease (COVID-19). Deep learning (DL) techniques are used to diagnose COVID-19 based on many chest X-ray. Due to the scarcity of available X-ray images, the performance of DL for COVID-19 detection is lagging, underdeveloped, and suffering from overfitting. Overfitting happens when a network trains a function with an  incredibly high variance to represent the training data perfectly. Consequently, medical images lack the availability of large labeled datasets, and the annotation of medical images is expensive and time-consuming for experts. As the COVID-19 virus is an infectious disease, these datasets are scarce, and it is difficult to get large datasets

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Aug 23 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Face mask detection based on algorithm YOLOv5s
...Show More Authors

Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on

... Show More
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Offline Signature Biometric Verification with Length Normalization using Convolution Neural Network
...Show More Authors

Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Diagnosis of Malaria Infected Blood Cell Digital Images using Deep Convolutional Neural Networks
...Show More Authors

     Automated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (6)
Scopus Crossref
Publication Date
Tue Nov 09 2021
Journal Name
Abu Dhabi International Petroleum Exhibition & Conference
Numerical Simulation of Gas Lift Optimization Using Artificial Intelligence for a Middle Eastern Oil Field
...Show More Authors
Abstract<p>Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit</p> ... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Engineering
Intelligent Dust Monitoring System Based on IoT
...Show More Authors

Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system

... Show More
View Publication
Publication Date
Sun Feb 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
تخطيط وجدولة تنفيذ مشاريع الخدمات البلدية بأستخدام نظام المعلومات الجغرافية(GIS ) بحث تطبيقي في مدينة الهندية ـ محافظة كربلاء المقدسة
...Show More Authors

     The research has handled an important service sector in Iraq which is the municipals sector since it is connected directly and closely with the services presented to the citizens, and because the process of accomplishing the projects needs planning and scheduling for implementing these projects according to the available financial allocating and it was no choice but finding modern methods that help succeeding the processes of planning through making use of  Geographic Information system (GIS) in providing the necessary information in scheduling the projects since it is considered  as one of the tools that conveys the occurred in collecting the huge amount of  the locative d

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Nov 11 2019
Journal Name
Spe
Modeling Rate of Penetration using Artificial Intelligent System and Multiple Regression Analysis
...Show More Authors
Abstract<p>Over the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.</p><p>The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame</p> ... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Wed May 04 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Knee Meniscus Segmentation and Tear Detection Based On Magnitic Resonacis Images: A Review of Literature
...Show More Authors

The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when

... Show More