Preferred Language
Articles
/
jperc-726
خرائط أساليب التعلم لدى طلبة الجامعة وعلاقتها بالتحصيل الدراسي
...Show More Authors

أولاً: مشكلة البحث:

للتربية دوراً أساسياً في تكوين الإنسان ليصبح قادراً على الإسهام الحضاري، ودفع عجلة التنمية إلى الأمام. وينظر للتربية حالياً بأنها عملية توثيق الصلة بين الناشئ والبيئة في ظروف معينة تعينه على النمو في الاتجاه المرغوب فيه. ويأتي الجانب المعرفي في مقدمة جوانب النمو، فهو المسؤول عن بناء شخصية الفرد وأسلوب تفكيره (سعيد، 1989، ص28). فضلاً عن كونه الخاصية الراقية عند الإنسان التي جعلته ينفرد بحضارة متقدمة تحمل في ثناياها مقومات وركائز استمرار نموها.

ونرى أن أغلب المشكلات التعليمية التي يواجهها التربويين تنطلق من الحقيقة التي ترى أنه لا يوجد أثنان متماثلان تماماً، إذ يختلف الطلبة عن بعضهم البعض في نمط تفكيرهم واهتمامهم ومستوى طاقاتهم ، وعلى الرغم من هذه الحقيقة، إلا أن العملية التعلمية لم تخرج من حيز التعليم التقليدي على أساس وحدات دراسية تضم أفراداً يختلفون في سماتهم الشخصية وإمكاناتهم العقلية، ومع ذلك يخضعون جميعاً لنفس طرائق التدريس، فهم يخضعون لمقرر دراسي واحد وامتحان واحد، ويطلب منهم أن يكونوا جميعاً على استعداد كامل لمقابلة تلك المتطلبات

  (شريف، 1981، ص79).

إن الطريقة التي يتعلم بها كل فرد أو التي يتبناها الفرد في البحث عن معاني الأشياء ومعرفة هذه المعاني حسب مدركاته الخاصة تسمى بأسلوب التعلم (محمد ومجيد، 1991، ص51) ويختلف هذا الأسلوب بحسب اختلاف ميول الفرد وخصائصه الجسمية والنفسية والعقلية. وهذا يعني أن مختلف المتعلمون يتعلمون بأساليب مختلفة. وعلى الرغم من هذه الحقيقة إلا أن مسألة اختلاف أساليب التعلم لدى الطلبة لم تدرس بصورة عامة ولم تحدد علاقتها بنواتج التعلم كالتحصيل الدراسي، إذ أن الغرض من التعليم هو أن يكون الفرد ذو تحصيل دراسي عالي أو حتى مقبول أحياناً.

وقد لاحظت الباحثة من خلال عملها كتدريسية في إحدى كليات جامعة بغداد إن الطلبة يتعلمون بأساليب تعليمية يختلف فيها الواحد عن الآخر مما ينعكس ذلك على تحصيلهم الدراسي، وأن أكثر ممن هم يداومون على القراءة وتحضير دروسهم، إلا أن مستوى تحصيلهم واطئ.

من ذلك تنبع مشكلة بحثنا الحالي الذي يسعى لتشخيص خرائط أساليب التعلم لدى طلبة الجامعة ومعرفة علاقتها بالتحصيل الدراسي، نظراً لفقر المكتبة النفسية لدراسة تتناول هذا الموضوع.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Diagnosing COVID-19 Infection in Chest X-Ray Images Using Neural Network
...Show More Authors

With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques.  T

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Artificial Neural Network and Latent Semantic Analysis for Adverse Drug Reaction Detection
...Show More Authors

Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (9)
Scopus Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Deep Learning-based Predictive Model of mRNA Vaccine Deterioration: An Analysis of the Stanford COVID-19 mRNA Vaccine Dataset
...Show More Authors

The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
SBOA: A Novel Heuristic Optimization Algorithm
...Show More Authors

A new human-based heuristic optimization method, named the Snooker-Based Optimization Algorithm (SBOA), is introduced in this study. The inspiration for this method is drawn from the traits of sales elites—those qualities every salesperson aspires to possess. Typically, salespersons strive to enhance their skills through autonomous learning or by seeking guidance from others. Furthermore, they engage in regular communication with customers to gain approval for their products or services. Building upon this concept, SBOA aims to find the optimal solution within a given search space, traversing all positions to obtain all possible values. To assesses the feasibility and effectiveness of SBOA in comparison to other algorithms, we conducte

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Self-Localization of Guide Robots Through Image Classification
...Show More Authors

The field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots.  To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Apr 14 2020
Journal Name
Modern Sport
The Effect of Using the Bybee Strategy(5ES) according to Brain Control Patterns in Learning a Kinetic Series on Floor exercises in Artistic Gymnastics for men
...Show More Authors

The aim of this study to identify patterns of cerebral control (right and left) for second grade students in the collage of physical education and sports science of the University of Baghdad, as well as identify the definition of theThe Effect of Using the Bybee Strategy(5ES) according to Brain Control Patterns in Learning a Kinetic Series on Floor exercises in Artistic Gymnastics for menمجلة الرياضة المعاصرةالمجلد 19 العدد 1 عام 2020effect using the (Bybee) strategy (5ES) according to brain control patterns inlearning a Kinetic series on floor exercises In artistic gymnastics for men, andidentify the best combination between the four research groups learn, use Finderexperimental method research sample consi

... Show More
Preview PDF
Crossref
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation
...Show More Authors

Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Wed Jun 29 2022
Journal Name
Journal Of The College Of Education For Women
Using Online Platforms to Improve Writing
...Show More Authors

Due to the difficulties that Iraqi students face when writing in the English language, this preliminary study aimed to improve students' writing skills by using online platforms remotely. Sixty first-year students from Al-Furat Al–Awsat Technical University participated in this study. Through these platforms, the researchers relied on stimuli, such as images, icons, and short titles to allow for deeper and more accurate participations. Data were collected through corrections, observations, and feedback from the researchers and peers. In addition, two pre and post-tests were conducted. The quantitative data were analysed by SPSS statistical Editor, whereas the qualitative data were analyzed using the Piot table, an Excel sheet. The resu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Exploring Important Factors in Predicting Heart Disease Based on Ensemble- Extra Feature Selection Approach
...Show More Authors

Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref