This research aimed at recognizing the properties of curricula that fitted to preeminent and talent students. Many types of these curricula were exposed, enrichment curriculum was explained as one of alternatives of available curricula.
The research used the analytical methodology for local and international literature in the field of preeminent and talent education to meet the properties of curricula that fitted to this special group of students. Many results was obtained as:
• This type of school enrichment curriculum consists of three levels( general discovery activities, individual and groups training activities, and individual or groups real problems).
• Investigation the effectively both sides of brain: right and left, and integrated the power zone of preeminent students learning and enhancing their mental abilities.
This study recommended to develop many of curricula types when designing the different subjects curricula, and making comparative study between the enrichment curriculum and another types of curricula for their relationship with the enhancing creation for talent
Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing
... Show MoreThroughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
This paper is concerned with introducing and studying the o-space by using out degree system (resp. i-space by using in degree system) which are the core concept in this paper. In addition, the m-lower approximations, the m-upper approximations and ospace and i-space. Furthermore, we introduce near supraopen (near supraclosed) d. g.'s. Finally, the supra-lower approximation, supraupper approximation, supra-accuracy are defined and some of its properties are investigated.
The presented work includes the Homotopy Transforms of Analysis Method (HTAM). By this method, the approximate solution of nonlinear Navier- Stokes equations of fractional order derivative was obtained. The Caputo's derivative was used in the proposed method. The desired solution was calculated by using the convergent power series to the components. The obtained results are demonstrated by comparison with the results of Adomain decomposition method, Homotopy Analysis method and exact solution, as explained in examples (4.1) and (4.2). The comparison shows that the used method is powerful and efficient.
The research is a vision of the future of industry in Iraq, so it is may be outside the ceiling of the capabilities of the Iraqi economy, and therefore it is exaggerated. Therefore, future plans must be applicable through the availability of capabilities. Everyone knows that the financial and administrative corruption and mismanagement of resources are the main cause of the inefficiency of the industrial sector, and the failure to exercise its real role in achieving economic development.; as well as the political situation and the dominance of parties and their insistence on addressing positions that have a strong relationship in managing the economic sector that has a significant impact on drawing the economic map in its current
... Show Moreيتكون الانحدار المقسم من عدة أقسام تفصل بينها نقاط انتماء مختلفة، فتظهر حالة عدم التجانس الناشئة من عملية فصل الأقسام ضمن عينة البحث. ويهتم هذا البحث في تقدير موقع نقطة التغيير بين الأقسام وتقدير معلمات الأنموذج، واقتراح طريقة تقدير حصينة ومقارنتها مع بعض الطرائق المستعملة في الانحدار الخطي المقسم. وقد تم استعمال أحد الطرائق التقليدية (طريقة Muggeo) لإيجاد مقدرات الإمكان الأعظم بالأسلوب الت
... Show MoreThe research aimed to prepare muscle elongation exercises for the arms with high intensity in which the training methods for young blind fencers vary, and to identify the effect of the diversity of muscle elongation exercises for the arms with high intensity on the cellular basal efficiency (lactic acid and sodium bicarbonate) and pulmonary respiration for young blind weapon fencers in terms of sports technology, and the experimental approach was adopted by designing the experimental and equal control groups, and the limits of the research community were represented by young fencers with shish weapon under the age of (20) years in the Army Sports Club, whose number is Total (15) swordsmen, continuing their training for the sports season (20
... Show MoreАрхив всех научных статей сборников конференций и журналов по направлению Филология.
In this work, we prove that the triple linear partial differential equations (PDEs) of elliptic type (TLEPDEs) with a given classical continuous boundary control vector (CCBCVr) has a unique "state" solution vector (SSV) by utilizing the Galerkin's method (GME). Also, we prove the existence of a classical continuous boundary optimal control vector (CCBOCVr) ruled by the TLEPDEs. We study the existence solution for the triple adjoint equations (TAJEs) related with the triple state equations (TSEs). The Fréchet derivative (FDe) for the objective function is derived. At the end we prove the necessary "conditions" theorem (NCTh) for optimality for the problem.
Irrigation scheduling techniques is one of the suggested solutions for water scarcity problem. The study aims to show the possibility of using practical and applicable irrigation scheduling program which was designed by Water Resources Department at the University of Baghdad by using Spreadsheet Formulas for Microsoft Excel program, version 2007, with some modification to generalize it and made it applicable to various climatic zone and different soil types, as a salvation for the shortage of irrigation water inside the irrigation projects. Irrigation projects which incidence of Tigris River basin will be taken as an applicable example. This program was based on water budgeting and programmed depending on scientific concepts which facili
... Show More