Sustainable development (SD) is an improvement that meets present needs but jeopardizes the ability of new populations to do the same. It is vital to acquaint EFL students with the terminology and idiomatic expressions of this discipline. Nowadays, sustainable development and the environment have been prioritized in every aspect of life. Since culture and the teaching of Foreign language English cannot be separated, the English language becomes the mean of communication in health, economics, education, and politics. Thus, integrating sustainable development goals within language learning and teaching is very important. This descriptive quantitative study aims to investigate the perception of EFL pre-service teachers of sustainable development. Students in their fourth year at the "College of Education for Women" for the academic year 2021-2022 are selected as the study sample and Balakrishna et al (2020) questionnaire is adopted and modified to be used as the study tool. The validity and reliability of the study tool have been ascertained by using face validity and the Alpha Cronbach formula respectively. Descriptive statistics (frequencies, weighting means, percentages) are used to find the results. The results indicate that EFL student-teachers' perception of sustainable development is moderate in their perception of sustainable development. Accordingly, suitable recommendations and suggestions are set forward.
Researchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the dat
... Show MoreParmi les oeuvres d'Albert Camus, qui s'éloignent un peu de sa
tendance générale qui traite les thèmes de l'absurde ,du néant et de la
question de la mort , on trouve son recueil "l'Exil et le Royaume" 1957
qui contient six nouvelles qui sont d'une invention moins épouvantable
(le Renégat , la Femme adultère , les Muets , le Pierre qui pousse , l'Hôte
et Jonas). Ces nouvelles , à l'exception du "Renégat" , ne provoquent pas
les questions philosophiques et dialectiques qui dominent la plupart des
oeuvres d'Albert Camus , Mais ces nouvelles traitent tout simplement la
question d'homme exilé dans son existence et sa recherche perpétuelle
de son royaume.
This study aim to identify the concept of web based information systems since its one of the important topics that is usually omitted by our organizations, in addition to, designing a web based information system in order to manage the customers data of Al- Rasheed bank, as a unified information system that is specialized to the banking deals of the customers with the bank, and providing a suggested model to apply the virtual private network as a tool that is to protect the transmitted data through the web based information system.
This study is considered important because it deals with one of the vital topics nowadays, namely: how to make it possible to use a distributed informat
... Show MoreAbstract: This research aims to investigate and analyze the most pressing issues facing the Iraqi economy, namely economic stability and inclusive growth Consequently, the present study investigates the effect of inflation and unemployment, which are significant contributors to economic instability, on inclusive growth dimensions such as GDP, education, health, governance, poverty, income inequality, and environmental performance. From 1991 to 2021, secondary data were collected using World Bank Indicators (WDI) and Organization for Economic Cooperation and Development (OECD) databases. The researchers also employed the autoregressive distributed lag (ARDL) model to determine the relationship between variables. The study revealed that fluct
... Show MoreIn this study, we attempt to provide healthcare service to the pilgrims. This study describes how a multimedia courseware can be used in making the pilgrims aware of the common diseases that are present in Saudi Arabia during the pilgrimage. The multimedia courseware will also be used in providing some information about the symptoms of these diseases, and how each of them can be treated. The multimedia courseware contains a virtual representation of a hospital, some videos of actual cases of patients, and authentic learning activities intended to enhance health competencies during the pilgrimage. An examination of the courseware was conducted so as to study the manner in which the elements of the courseware are applied in real-time learn
... Show MoreIn this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
Computational Thinking (CT) is very useful in the process of solving everyday problems for undergraduates. In terms of content, computational thinking involves solving problems, studying data patterns, deconstructing problems using algorithms and procedures, doing simulations, computer modeling, and reasoning about abstract things. However, there is a lack of studies dealing with it and its skills that can be developed and utilized in the field of information and technology used in learning and teaching. The descriptive research method was used, and a test research tool was prepared to measure the level of (CT) consisting of (24) items of the type of multiple-choice to measure the level of "CT". The research study group consists of
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreRecommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show More