This study aims to find out the effectiveness of a cognitive-behavioral counseling program in enhancing self-management in reducing the academic procrastination of tenth-grade male students. The sample consisted of (26) male students divided into an experimental group of (13) students and a control group of (13) students. Two scales of self-management and academic procrastination were used, prepared by the researcher. The counseling program was prepared by the researcher. The results showed the program's effectiveness in enhancing self-management and reducing academic procrastination in the posttest, as it showed the continuation of this enhancement in self-management and the increase in the reduction of procrastination in the follow-up test of the experimental group
Separation of Trigonelline, the major alkaloid in fenugreek seeds, is difficult because the extract of these seeds usually contains Trigonelline, choline, mucilage, and steroidal saponins, in addition to some other substances. This study amis to isolate the quaternary ammonium alkaloid (Trigonelline) and choline from fenugreek seeds (Trigonella-foenum graecum L.) which have similar physiochemical properties by modifying of the classical method. Seeds were defatted and then extracted with methanol. The presence of alkaloids was detected by using Mayer's and Dragendorff's reagents. In this work, trigonilline was isolated with traces of choline by subsequent processes of purification using analytical and preparative TLC techniques.
... Show MoreThe logistic regression model regarded as the important regression Models ,where of the most interesting subjects in recent studies due to taking character more advanced in the process of statistical analysis .
The ordinary estimating methods is failed in dealing with data that consist of the presence of outlier values and hence on the absence of such that have undesirable effect on the result. &nbs
... Show MoreThe research included studying the effect of different plowing depths (10,20and30) cm and three angles of the disc harrows (18,20and25) when they were combined in one compound machine consisting of a triple plow and disc harrows tied within one structure. Draft force, fuel consumption, practical productivity, and resistance to soil penetration. The results indicated that the plowing depth and disc angle had a significant effect on all studied parameters. The results showed that when the plowing depth increased and the disc angle increased, leads to increased pull force ratio, fuel consumption, resistance to soil penetration, and reduce the machine practical productivity.
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreLow-temperature stratification, high-volumetric storage capacity, and less-complicated material processing make phase-changing materials (PCMs) very suitable candidates for solar energy storage applications. However, their poor heat diffusivities and suboptimal containment designs severely limit their decent storage capabilities. In these systems, the arrangement of tubes conveying the heat transport fluid (HTF) plays a crucial role in heat communication between the PCM and HTF during phase transition. This study investigates a helical coil tube-and-shell thermal storage system integrated with a novel central return tube to enhance heat transfer effectiveness. Three-dimensional computational fluid dynamics simulations compare the proposed d
... Show MoreThyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show MoreIn this study, a one-dimensional model represented by Butler-Volmer-Monod (BVM) model was proposed to compute the anode overpotential and current density in a mediator-less MFC system. The system was fueled with various organic loadings of real field petroleum refinery oily sludge to optimize the favorable organic loading for biomass to operate the suggested system. The increase in each organic loading showed higher resistance to electrons transport to the anode represented by ohmic loss. On the contrary, both activation and mass transfer losses exhibited a noticeable decrement upon the increased organic loadings. However, current density was improved throughout all increased loads achieving a maximum current density of 5.2 A/m3
... Show MoreIn the field of civil engineering, the adoption and use of Falling Weight Deflectometers (FWDs) is seen as a response to the ever changing and technology-driven world. Specifically, FWDs refer to devices that aid in evaluating the physical properties of a pavement. This paper has assessed the concepts of data processing, storage, and analysis via FWDs. The device has been found to play an important role in enabling the operators and field practitioners to understand vertical deflection responses upon subjecting pavements to impulse loads. In turn, the resultant data and its analysis outcomes lead to the backcalculation of the state of stiffness, with initial analyses of the deflection bowl occurring in conjunction with the measured or assum
... Show MoreIn this paper, the necessary optimality conditions are studied and derived for a new class of the sum of two Caputo–Katugampola fractional derivatives of orders (α, ρ) and( β,ρ) with fixed the final boundary conditions. In the second study, the approximation of the left Caputo-Katugampola fractional derivative was obtained by using the shifted Chebyshev polynomials. We also use the Clenshaw and Curtis formula to approximate the integral from -1 to 1. Further, we find the critical points using the Rayleigh–Ritz method. The obtained approximation of the left fractional Caputo-Katugampola derivatives was added to the algorithm applied to the illustrative example so that we obtained the approximate results for the stat
... Show More