The study problem is about the role of Shaqra University in building the mental image of the Kingdom’s 2030 vision among its female students. The study aims to examine the university’s role in providing information about the Kingdom’s 2030 vision, its role in shaping the vision’s image, the university’s role in the behavioral aspect of the vision, along with studying the extent of differences in answers of the sample individuals towards the study themes attributed to the personal variables. The researcher adopted the descriptive survey method. A sample of (1399) female students was used to achieve the study objectives. The results showed that university’s role in building the mental image of the Kingdom’s 2030 vision, among its students in general, was mediocre from the sample’s point of view, for the three themes: providing information about the Kingdom’s vision 2030, forming the image of the Kingdom’s vision, and the university’s role in the behavioral aspect of the Kingdom’s vision 2030. It found also that there are no statistically significant differences between the study sample answers in terms of the three study themes, due to the number of academic years that have been spent at the university so far. There are no significant differences between the sample in the three study themes, depending on the faculty variable (scientific-practical). There are significant differences between the samples in the three study themes, depending on two variables: the extent to which the college assigns the sample to any work related to the Kingdom's vision 2030, and the acquisition of information through the study at the college about the Kingdom's 2030 vision.
Medical image segmentation is one of the most actively studied fields in the past few decades, as the development of modern imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT), physicians and technicians nowadays have to process the increasing number and size of medical images. Therefore, efficient and accurate computational segmentation algorithms become necessary to extract the desired information from these large data sets. Moreover, sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures presented in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning. Many of the proposed algorithms could perform w
... Show MoreThis paper presents the matrix completion problem for image denoising. Three problems based on matrix norm are performing: Spectral norm minimization problem (SNP), Nuclear norm minimization problem (NNP), and Weighted nuclear norm minimization problem (WNNP). In general, images representing by a matrix this matrix contains the information of the image, some information is irrelevant or unfavorable, so to overcome this unwanted information in the image matrix, information completion is used to comperes the matrix and remove this unwanted information. The unwanted information is handled by defining {0,1}-operator under some threshold. Applying this operator on a given ma
... Show MoreDue to the vast using of digital images and the fast evolution in computer science and especially the using of images in the social network.This lead to focus on securing these images and protect it against attackers, many techniques are proposed to achieve this goal. In this paper we proposed a new chaotic method to enhance AES (Advanced Encryption Standards) by eliminating Mix-Columns transformation to reduce time consuming and using palmprint biometric and Lorenz chaotic system to enhance authentication and security of the image, by using chaotic system that adds more sensitivity to the encryption system and authentication for the system.
Image retrieval is used in searching for images from images database. In this paper, content – based image retrieval (CBIR) using four feature extraction techniques has been achieved. The four techniques are colored histogram features technique, properties features technique, gray level co- occurrence matrix (GLCM) statistical features technique and hybrid technique. The features are extracted from the data base images and query (test) images in order to find the similarity measure. The similarity-based matching is very important in CBIR, so, three types of similarity measure are used, normalized Mahalanobis distance, Euclidean distance and Manhattan distance. A comparison between them has been implemented. From the results, it is conclud
... Show More