The study aimed to evaluate the distance learning experience in light of the spread of the Corona pandemic - Covid19 - from the teachers' point of view in Islamic Science Institutes in the Sultanate of Oman, which was applied during the second semester of the 2019/2020 academic year. The study sample consisted of (77) teachers from The Islamic Science Institutes of The Sultan Qaboos Higher Center for Culture and Science. The researchers prepared a questionnaire to evaluate the reality of the experience. The study results revealed, the followings: The Department of Educational Affairs and Training at The Sultan Qaboos Higher Center for Culture and Science was able to a moderate degree in the rapid transition to a distance learning system following the suspension of studies due to the spread of the Coronavirus - Covid19 -; the teachers see to a high degree the importance of applying the distance learning system; the Microsoft Teams educational platform that was used to teach in the distance learning system was appropriate at a high level; and that although the teachers’ readiness appeared to a high degree, the students’ readiness was low according to the teachers’ point of view. The study also found that there was a group of challenges facing the application of the distance learning system, the most important of which were the weak infrastructure for internet and communications networks and the lack of computers for teachers and students. The results of the Multivariate Analysis of Variance (MANOVA) also found that there were no statistically significant differences in the mean scores on the distance education questionnaire in The Islamic Science Institutes according to teachers' specializations and years of practical experience and the interaction between these two variables. This confirms that teachers’ opinions about the learning system experience are similar regardless of their specializations or years of practical experience. Finally, the researchers recommended a set of recommendations, the most important of which is the continuation of continuous training for teachers and students on modern technologies that serve the application of the distance learning system. They also suggested conducting more studies on the reality of applying the distance learning system in various educational institutions in the Sultanate of Oman.
Predicting the network traffic of web pages is one of the areas that has increased focus in recent years. Modeling traffic helps find strategies for distributing network loads, identifying user behaviors and malicious traffic, and predicting future trends. Many statistical and intelligent methods have been studied to predict web traffic using time series of network traffic. In this paper, the use of machine learning algorithms to model Wikipedia traffic using Google's time series dataset is studied. Two data sets were used for time series, data generalization, building a set of machine learning models (XGboost, Logistic Regression, Linear Regression, and Random Forest), and comparing the performance of the models using (SMAPE) and
... Show Moreis at an all-time high in the modern period, and the majority of the population uses the Internet for all types of communication. It is great to be able to improvise like this. As a result of this trend, hackers have become increasingly focused on attacking the system/network in numerous ways. When a hacker commits a digital crime, it is examined in a reactive manner, which aids in the identification of the perpetrators. However, in the modern period, it is not expected to wait for an attack to occur. The user anticipates being able to predict a cyberattack before it causes damage to the system. This can be accomplished with the assistance of the proactive forensic framework presented in this study. The proposed system combines
... Show MoreCyberbullying is one of the biggest electronic problems that takes multiple forms of harassment using various social media. Currently, this phenomenon has become very common and is increasing, especially for young people and adolescents. Negative comments have a significant and dangerous impact on society in general and on adolescents in particular. Therefore, one of the most successful prevention methods is to detect and block harmful messages and comments. In this research, negative Arabic comments that refer to cyberbullying will be detected using a support vector machine algorithm. The term frequency-inverse document frequency vectorizer and the count vectorizer methods were used for feature extraction, and the results wer
... Show MoreActivity recognition (AR) is a new interesting and challenging research area with many applications (e.g. healthcare, security, and event detection). Basically, activity recognition (e.g. identifying user’s physical activity) is more likely to be considered as a classification problem. In this paper, a combination of 7 classification methods is employed and experimented on accelerometer data collected via smartphones, and compared for best performance. The dataset is collected from 59 individuals who performed 6 different activities (i.e. walk, jog, sit, stand, upstairs, and downstairs). The total number of dataset instances is 5418 with 46 labeled features. The results show that the proposed method of ensemble boost-based classif
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreIn education, exams are used to asses students’ acquired knowledge; however, the manual assessment of exams consumes a lot of teachers’ time and effort. In addition, educational institutions recently leaned toward distance education and e-learning due the Coronavirus pandemic. Thus, they needed to conduct exams electronically, which requires an automated assessment system. Although it is easy to develop an automated assessment system for objective questions. However, subjective questions require answers comprised of free text and are harder to automatically assess since grading them needs to semantically compare the students’ answers with the correct ones. In this paper, we present an automatic short answer grading metho
... Show MoreDeepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp
... Show MoreRumors are typically described as remarks whose true value is unknown. A rumor on social media has the potential to spread erroneous information to a large group of individuals. Those false facts will influence decision-making in a variety of societies. In online social media, where enormous amounts of information are simply distributed over a large network of sources with unverified authority, detecting rumors is critical. This research proposes that rumor detection be done using Natural Language Processing (NLP) tools as well as six distinct Machine Learning (ML) methods (Nave Bayes (NB), random forest (RF), K-nearest neighbor (KNN), Logistic Regression (LR), Stochastic Gradient Descent (SGD) and Decision Tree (
... Show MoreA substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MorePalm vein recognition technology is a one of the most effective biometric technologies for personal identification. Palm acquisition techniques are either contact-based or contactless-based. The contactless-based palm vein system is considered more accurate and efficient when used in modern applications, but it may suffer from problems like pose variations and the delay in the matching process. This paper proposes a contactless-based identification system for palm vein that involves two main steps; First, the central region of the palm is cropped using fast extract region of interest algorithm, then the features are extracted and classified using altered structure of Residual Attention Network, which is a developed version of convolution
... Show More