The aim of the study is to reveal the effect of the constructivist learning Model on the achievement and reflective thinking of the fifth grade literary Preparatory students in History subject. A random sample was chosen which consisted of 64 students divided into experimental and control groups, each group consisted of 32 students. The experimental group was taught via the constructivist learning model, and the control group was taught via the traditional method. The experiment was lasted for Eight weeks, each week taught two lessons. The researcher adopted the experimental design with partial control. The two groups were equalized statistically. The researcher used two instruments, the achievement test and the reflective thinking test. The results showed that the students of the experimental group that studied via the constructive learning model were superior to the students in the control group which studied via the traditional method in the achievement test and the reflective thinking test. This refers that teaching via constructivist learning Model is considered a good method and has a positive impact on teaching. When measuring the effect size of the independent variable (constructivism learning model) in the two dependent variables (achievement and reflective thinking), the results showed that the effect size was (big).
Semantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po
Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci
... Show MorePermeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy
... Show MoreThis study is conducted to investigate the validity of using different levels of Rustumiya sewage water for irrigation and their effects on corn growth and some of the chemical properties of the soil such as electrical conductivity and soil pH in extract soil paste , the micro nutrient content in soil and plant which are ( Fe , Mn , Zn , Cu , Cd , Pb ). Three levels of sewage water ( 0 , 50 , 100 )% in two stages were used ,the three levels of wastewater ( without soil fertilization ) were used in the first stage , Where 80 Kg N /D+50Kg P2O5 /D was added to the soil as fertilizer in the control (0%) treatment and 40 Kg N/D+25Kg P2O5/D were added to 50 and 100% levels in the second stage .Corn seeds were planted in 12kg plastic pots in Com
... Show MoreParkinson’s disease (PD) consider as a progressive ageing neurodegenerative disease, Parkinson’s consider as a heterogenous disease, with mainly initiate through correlation between genetic and epigenetic by inducing of different factors on some related genes, these factors like (environmental, toxicants, nutrition, heavy metals, pesticides, some drugs) and also(trauma on head ,strokes) in addition to unknown reasons which cause an idiopathic PD .Current study aims to focusing on specific related PD gene called SNCA by single nucleotides polymorphism (rs2619363) as a risk factor for PD initiation disease in PD patients in addition to study the effect of polymorphisms on random Iraqi patients with different gastrointestinal
... Show More