Learning Disabilities are described as a hidden and puzzling disability. Children with these difficulties have the potential to hide weaknesses in their performance because they are a homogenous group of disorders that consist of obvious difficulties in acquiring and using reading, writing, Mathematical inference. Thus, the research aims to identify the disabilities of academic learning in (reading, writing, mathematics), identify the problems of behavior (general, motor, social). Identify the relationship among behaviour problems. The research also aims to identify the counseling needs to reduce the behavioral problems. The researcher adopted the analytical descriptive method by preparing two main tools for measuring learning disabilities and behavioral problems, which were administered to a sample of sixth-grade pupils in (16) primary schools in four governorates in central and southern Iraq. The results of the study showed that the sample has academic learning difficulties and behavioral problems in all fields. Moreover, the study revealed a number of necessary guidance needs. The researcher came out with some recommendations.
In this study, the two researchers try to identify the degree of psychological flow among third-stage students in the College of Physical Education and Sports Sciences / University of Baghdad, by constructing a psychometric flow meter for third-stage students in the College of Physical Education and Sports Sciences / University of Baghdad, and the research sample reached 123 female students They represent 100% of the research community, and after conducting the scientific foundations for building the scale, the two researchers reached the final version of the psychometric flow scale with 21 items with four axes.
The research aims to know the concept of politic behavior as one of the important behaviours in the different fields and sectors. It is considered to be part of the organizatial work to face the expected risks. It includes two group of factors personal (self –monitors, locus of control ,expectation s of success, perceived job alternatives)and organizational(promotion ,division resources,role ambiguity ,democratic decision)studied by the researcher in the frame of the relationship with the variable of display continuous trust matain which includes two variable (build trust mantain, display trust continuouness)through applied frame by random sample consists of (90)employee at Farouq State
... Show MoreThe aim of this study was to measure the effectiveness of a proposed program to develop the creative abilities of the students of Tabuk University and its impact on the creative output of the NEOM project. The sample of the study consisted of (50) university students divided into two groups: an experimental group of 25 students who receive the proposed training program, and control group of (25) students.
To achieve these objectives, the researcher designed and developed tools to collect the required data, which were verified their validity and reliability.
The descriptive statistics of mean, standard deviations, correlation coefficient, T test for the associated sample were used in the analysis of the results of th
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreFace recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreThe complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Tra
... Show MoreDiagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad
... Show MoreProducts’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers. In this research, we pr
... Show More