The current research aimed to investigate the psychometric characteristics of the Arabic version of the Nomophobia scale for the Omani youth. The scale was administered to a random sample of students from public and private universities and colleges in Oman. The research sample consisted of 2507 students, of whom 868 males and 1639 females. The validity of the measure was first checked by presenting the scale to a group of experts in this field. Then the exploratory and confirmatory factor analysis was carried out. The exploratory factor analysis revealed the existence of three main factors: the fear of connectivity loss, the fear of communication loss with others, and the fear of network outages. These factors accounted for 65.6% of the total variance. The Corrected correlation coefficients for each item were calculated from the dimension to which they belonged and ranged from 0.59 to 0.78. The correlative validity of the scale was tested with the social networking addiction scale, and the correlation coefficient between the two measures was 0.63. For reliability of the scale, it was verified by using Cronbach alpha coefficient of the scale as a whole and its three dimensions showed as follows 0.83, 0.87, 0.91 and 0.94, respectively. Moreover, the Guttman split-half coefficient was calculated, which reached 0.87. These results confirm that the scale has high psychometric properties.
Vanadium dioxide nanofilms are one of the most essential materials in electronic applications like smart windows. Therefore, studying and understanding the optical properties of such films is crucial to modify the parameters that control these properties. To this end, this work focuses on investigating the opacity as a function of the energy directed at the nanofilms with different thicknesses(1–100) nm. Effective mediator theories(EMTs), which are considered as the application of Bruggeman’s formalism and the Looyenga mixing rule, have been used to estimate the dielectric constant of VO2 nanofilms. The results show different opacity behaviors at different wavelength ranges(ultraviolet, visible, and infrared). The results depict that th
... Show MoreThin films of tin sulfide (SnS) were prepared by thermal evaporation technique on glass substrates, with thickness in the range of 100, 200 and 300nm and their physical properties were studied with appropriate techniques. The phase of the synthesized thin films was confirmed by X-ray diffraction analysis. Further, the crystallite size was calculated by Scherer formula and found to increase from 58 to 79 nm with increase of thickness. The obtained results were discussed in view of testing the suitability of SnS film as an absorber for the fabrication of low-cost and non toxic solar cell. For thickness, t=300nm, the films showed orthorhombic OR phase with a strong (111) preferred orientation. The films deposited with thickness < 200nm deviate
... Show MoreIn this paper, the definition of fuzzy anti-inner product in a linear space is introduced. Some results of fuzzy anti-inner product spaces are given, such as the relation between fuzzy inner product space and fuzzy anti-inner product. The notion of minimizing vector is introduced in fuzzy anti-inner product settings.
The D.C. electrical properties of poly (ethylene oxide)/MgCl2 composites were investigated as a function of different MgCl2 filler concentrations (0, 5, 10, 15 and 20 wt.%) and different temperatures in the range (276–333)o K at three different polarizing fields. Resistivity:ï² and dc Conductivity: σ dc were measured, and the activation energy: Ea of the thermal rate-process of the electrical conduction was investigated. It was found that the current-voltage measurement results exhibited Ohmic resistance behavior, the composites exhibit negative temperature reliance of resistivity and enhancement in the D.C. electrical conductivity with both temperature and MgCl2 concentration. The determined activation energy was found to
... Show MoreAbstract
In this research, the morphology and mechanical properties of (Epoxy/PVC) blend were investigated. (EP/PVC) blend was prepared by manual mixing of epoxy resin with different weight ratios of (Poly vinyl chloride (PVC) after dissolving it in cyclohexanon). Five sheets of polymer blends in wt% included (0%, 5%, 10%, 15% and 20%) of PVC were prepared at room temperature. Tests were carried out to study some mechanical properties for these blends and compared with the properties of pure epoxy. The morphology of the prepared materials was examined to study the compatibility nature between the two polymers under work. It was found that the best ratio of addition is (20%) of PVC.
... Show MoreThe present paper deals with prepared of ternary Se80-xTe20Gex system alloys and thin films. The XRD analysis improved that the amorphous structure of alloys and thin films for ternary Se80-xTe20Gex (at x=10and 20at.%Ge) which prepared by thermal evaporation techniques with thickness 250 nm. The optical energy gap measurements show that the optical energy gap decreases with increasing of (Ge) content from (1.7 to 1.47 eV)
It is found that the optical constants, such as refractive
index ,extinction coefficient, real and imaginary dielectric
constant are non systematic with increasing of Ge contents
and annealing temperatures
In this paper, we introduce a new type of Drazin invertible operator on Hilbert spaces, which is called D-operator. Then, some properties of the class of D-operators are studied. We prove that the D-operator preserves the scalar product, the unitary equivalent property, the product and sum of two D-operators are not D-operator in general but the direct product and tenser product is also D-operator.
This search study the effect of particle size of graphite on the mechanical and thermal properties of epoxy composites, where graphite adopted with particle sizes (45,53,75) ?m, respectively, and the percentages by weight (0,1,3,5,7,9)% for each size of this three particle sizes.Mechanical properties represented by the bending (three-point bending) and through which the conclusion is bending stress and modulus of elasticity, thermal properties were either through thermal conductivity tests.The results showed that the ratio(1%) is the maximum value of bending stress at the three particle size and the (45 ?m) is the maximum.Thermal conductivity result show is the maximum value at ratio (1%) of particle size(53 ?m)
In this research PbS thin film have been prepared by chemical bath deposition technique (CBD).The PbS film with thickness of (1-1.5)μm was thermally treated at temperature of 100°C for 4 hours. Some Structural characteristics was studied by using X-ray diffraction (XRD)and optical microscope photograph some of chemical gas sensing measurements were carried out ,it shown that the sensitivity of (CO2) gas depend on the grain Size and deposition substrate. The grain size of PbS film deposited on on glass closed to 21.4 nm while 37.97nm for Si substrate. The result of current-voltage characterization shwon the sensitivity of prepared film deposited on Si better than film on glass.
Porosity and permeability are the most difficult properties to determine in subsurface reservoir characterization. The difficulty of estimating them arising from the fact that porosity and permeability may vary significantly over the reservoir volume, and can only be sampled at well location. Secondly, the porosity values are commonly evaluated from the well log data, which are usually available from most wells in the reservoir, but permeability values, which are generally determined from core analysis, are not usually available. The aim of this study is: First, to develop correlations between the core and the well log data which can be used to estimate permeability in uncored wells, these correlations enable to estimate reservoir permeabil
... Show More