E-learning seeks to create an interactive learning environment between the teacher and the learner through electronic media conveying in more than one direction, regardless of how the environment and its variables are identified. It also develops skills necessary to deal with technology in order to be able to take into account the individual differences between them and helps e-learning teacher and learner to achieve the goals set in advance and identify educational objectives in a clear manner. The research aims to identify e-learning in its benefits and management systems. It has three sections dealt with in the current research. Chapter II concentrates on the research Methodology, which consisted of three sections: The first sections: What is e-learning, its benefits, types, constraints and disadvantages, The second section: the aspects of difference between e-learning and traditional education, and the most important equipment. For the third section, it addressed the e-learning and the management systems. Chapter III presents conclusions, recommendations, and suggestions, which can be summarized as follows: E-learning is directly dependent on the use of ICTs, which means that teacher and learner must be familiar with these techniques for the success of the educational process. E-learning provides a great opportunity for many groups in the society, especially those groups missed opportunities for education regardless of the reasons, whether economic or social. For Recommendations: The need to encourage school administrations to adopt this type of education and encourage teachers to use it. The need to set up training courses for teachers to clarify the importance of e-learning, ICT and qualify them to deal with this technology.
The research aims to identify the effect of jigsaw strategy in learning achievement and engaging for the third grade intermediate students in chemistry. The research sample consisted of (61) students distributed in two experimental and control groups. The research tools consisted in the achievement test and the measure of engaging learning. The results showed that there are statistically significant differences at the level of (α = 0.05) between the experimental group and the control group in both the achievement test and the measure of learning involvement for the benefit of the experimental group. In this light, the researcher recommended the use of jigsaw strategy for teaching the subject matter. Lamia because of its impact in raising
... Show MoreThe aim of this research is to construct an educational program in light of the theory of behavioral cognitive and its impact on the development of the efficient response to students affected by crises (centers of your right to education). To achieve the objectives of the research, two scales were developed by the researcher in addition to two equivalent hypotheses were formulated. The scale contains (26) items divided into five fields; for its validity and reliability were derived based on the measure of efficient response, an educational program based on the theory of behavioral cognition. The test and the educational program were applied to a sample of (60) students from the centers of your right to education, divided into experimenta
... Show MoreGenome sequencing has significantly improved the understanding of HIV and AIDS through accurate data on viral transmission, evolution and anti-therapeutic processes. Deep learning algorithms, like the Fined-Tuned Gradient Descent Fused Multi-Kernal Convolutional Neural Network (FGD-MCNN), can predict strain behaviour and evaluate complex patterns. Using genotypic-phenotypic data obtained from the Stanford University HIV Drug Resistance Database, the FGD-MCNN created three files covering various antiretroviral medications for HIV predictions and drug resistance. These files include PIs, NRTIs and NNRTIs. FGD-MCNNs classify genetic sequences as vulnerable or resistant to antiretroviral drugs by analyzing chromosomal information and id
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
Le présent travail aborde la question de l’enseignement de traduction en tant que matière faisant partie du programme élaboré dans des Départements de Français au sein de certaines universités irakiennes, en particulier celle de Bagdad. La méthode d’enseigner suivie constitue une véritable problématique qu’on a bien diagnostiquée à partir de quelques années d’expériences, à la lumière des observations faites dans des cours de traduction professionnelle, et dans la perspective des citations et témoignages établies par des traductologues et pédagogues et principalement par Marianne LEDERER qui a établi la Théorie Interprétative de la traduction. Mais pourquoi l’enseignement lui-même poserait une telle probl
... Show MoreDeep Learning Techniques For Skull Stripping of Brain MR Images
HM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023
One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show MoreIn this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A
... Show More