This study investigates the Linguistic and Conceptual equivalence of Conner’s Revised Scales when applied on a Sudanese sample. Sudanese parents and teachers completed behavior-rating scales on a stratified sample of 200 children. These instruments were based on Conner’s parent -48 and teacher-28 questionnaires. Following a reliable translation into Sudanese Arabic the test-retest reliability of the items and the internal consistency of the original Conner’s' revised scales were explored. The associations between scale scores and between parents and teachers scores were also examined. Both instruments displayed good reliability and the original Conners scales had satisfactory internal consistency. The inter-correlation suggested that the scales behaved in similar ways to those used in the original studies in the US. As far as linguistic and conceptual equivalence with previous studies in different cultures was concerned, it appeared that the Sudanese raters' views of problems mirrored their western counterparts. The practical and theoretical implications of these results are discussed in terms of their benefits to child mental health practitioners in the Sudan.
Background: Bacteriocin is a peptidic toxin has many advantages to bacteria in their ecological niche and has strong antibacterial activity. Objective: The aim of this study was to evaluation of bacteriocin using Streptococcus sanguinis isolated from human dental caries.
Subjects and Methods: Thirty five streptococcus isolates were diagnosed and tested for their production of bacteriocin, and then the optimal conditions for production of bacteriocin were determined. After that, the purification of bacteriocin was made partially by ammonium sulfate at 95% saturation levels, followed by and gel filtration chromatography
... Show MoreThis study identified the genus Coelastrella Chodat, 1922 which was isolated from a sediment sample taken from the Tigris river in Baghdad Governorate, Iraq. The alga was isolated and cultured in modified Chu 10 media and the morphological features of the isolated algae were observed in light microscopy (LM); it showed some characteristic features of this genus, such as its ellipsoidal or lemon- shaped cells, a visible pyrenoid and the chloroplast parietal. To ensure correct identification of the isolated alga, a molecular analysis using 18S rRNA gene and DNA sequencing revealed a match with C. terrestris (Reisigl) Hedewald & N. Hanagata 2002. This species is a new record in Iraq
... Show MoreMultiple myeloma is hematological disease produces many complications in the bone, kidney, neural and other complications. The study aims to measure serum biomolecules like fetuin-A and resistin and determined the possibility to use these biomarkers as disease predictor. blood samples were isolated from 58 patients and 24 sex and age-matched control, serum then isolated, and proper ELISA kit then used to a determined level of B2 microglobulin, resistin, and fetuin-A. The result demonstrated significant increase in B2 microglobulin, fetuin-A and resistin in patients compare to control (1.3470.714 vs. 0.9130.253), p = 0.000, (14.00310.352 vs. 9.2594.264), p= 0.005, (1.9673.595 vs. 0.6040.622), p = 0.009, respectively. These di
... Show MoreDouble-layer micro-perforated panels (MPPs) have been studied extensively as sound absorption systems to increase the absorption performance of single-layer MPPs. However, existing proposed models indicate that there is still room for improvement regarding the frequency bands of absorption for the double-layer MPP. This study presents a double-layer MPP formed with two single MPPs with inhomogeneous perforation backed by multiple cavities of varying depths. The theoretical formulation is developed using the electrical equivalent circuit method to calculate the absorption coefficient under a normal incident sound. The simulation results show that the proposed model can produce absorption coefficient with wider absorption bandwidth compared w
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More