Preferred Language
Articles
/
jpd-315
Enviromental impact assessment of cement industry using Leopold Matrix
...Show More Authors

The assessment of the environmental impact of the cement industry using the Leopold Matrix is ​​to determine the negative and positive impacts on the environment resulting from this industry, and what are the long-term and short-term effects, direct and indirect, and the amount of these effects and potential risks, and that this evaluation process is done through a number of methods, including Matrix method, including (Leopold).

 

The importance of the research because the cement occupies is of great importance in the world, especially in our country, Iraq, in the sector of construction and modernity, and the toxic emissions and solid waste produced by the production of this material.

 

Environmental problems resulting from this industry have been addressed. The basic problem of the cement industry is determined in the environmental field because of the cumulative effect it has on the environment and production capacity on the surrounding environment.

 

The main objective of conducting the research is to assess the environmental impacts of major industrial projects, especially cement, one of the analytical methods in urban planning, which can contribute to reducing the negative effects on the environment and on the uses of the surrounding land. Among the disadvantages of this industry is that it

 

 

 

 

 

 increases air, soil and water pollution, as well as leveling the lands and decreases the health safety of workers through the emissions they cause,

 

perhaps the most prominent of which are carbon dioxide (CO2), carbon dioxide (CO), and methane (CH4).

 

As these gases lead to direct air pollution, especially in the areas surrounding the plant.The Kirkuk cement plant is one of the major economic development projects in the country as it provides a national and local product to support other construction projects, and at the same time it is a category A polluting industry and therefore it is necessary to sign it outside the cities, and it requires an environmental impact assessment prepared in advance according to a detailed study that includes problems and impacts. Expected and solutions to it.

 

The evaluation process is to ensure the protection, improvement and preservation of the environment and natural resources. Therefore, the research considers the necessity to oblige the owners of cement projects to implement the environmental requirements mentioned in the environmental legislation brochure in force, and to develop a strategy to mitigate the negative impacts and alternative options in the production process.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Sep 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
POWER GENERATION FROM “PRO” PROCESS USING FLAT SHEET TFC–ULP KOCH MEMBRANES
...Show More Authors

The production of power using the process of pressure–retarded osmosis (PRO) has been studied both experimentally and theoretically for simulated sea water vs. river water and deionized water under two cases: the first is for simulated real conditions of sea water and river water and second under low brine solution concentration to examine the full profile of the power- pressure. The influence of concentration polarization (CP) on water flux has been examined as well.

View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Mining categorical Covid-19 data using chi-square and logistic regression algorithms
...Show More Authors

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Data Aggregation in Wireless Sensor Networks Using Modified Voronoi Fuzzy Clustering Algorithm
...Show More Authors

Data centric techniques, like data aggregation via modified algorithm based on fuzzy clustering algorithm with voronoi diagram which is called modified Voronoi Fuzzy Clustering Algorithm (VFCA) is presented in this paper. In the modified algorithm, the sensed area divided into number of voronoi cells by applying voronoi diagram, these cells are clustered by a fuzzy C-means method (FCM) to reduce the transmission distance. Then an appropriate cluster head (CH) for each cluster is elected. Three parameters are used for this election process, the energy, distance between CH and its neighbor sensors and packet loss values. Furthermore, data aggregation is employed in each CH to reduce the amount of data transmission which le

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Non-linear support vector machine classification models using kernel tricks with applications
...Show More Authors

The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample

... Show More
View Publication Preview PDF
Crossref (2)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Water Movement through Soil under Drip Irrigation using Different Hydraulic Soil Models
...Show More Authors

Drip irrigation is one of the conservative irrigation techniques since it implies supplying water directly on the soil through the emitter; it can supply water and fertilizer directly into the root zone. An equation to estimate the wetted area in unsaturated soil is taking into calculating the water absorption by roots is simulated numerically using HYDRUS (2D/3D) software. In this paper, HYDRUS comprises analytical types of the estimate of different soil hydraulic properties. Used one soil type, sandy loam, with three types of crops; (corn, tomato, and sweet sorghum), different drip discharge, different initial soil moisture content was assumed, and different time durations. The relative error for the different hydrauli

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Aug 31 2015
Journal Name
Journal Of Theoretical And Applied Information Technology
EXAM QUESTIONS CLASSIFICATION BASED ON BLOOM’S TAXONOMY COGNITIVE LEVEL USING CLASSIFIERS COMBINATION
...Show More Authors

Preview PDF
Scopus (76)
Scopus
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
A Survey on Arabic Text Classification Using Deep and Machine Learning Algorithms
...Show More Authors

    Text categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy th

... Show More
Scopus (17)
Crossref (8)
Scopus Crossref
Publication Date
Thu Apr 20 2023
Journal Name
Fire
An Efficient Wildfire Detection System for AI-Embedded Applications Using Satellite Imagery
...Show More Authors

Wildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob

... Show More
View Publication
Scopus (27)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Journal Of Science
Crescent Moon Visibility: A New Criterion using Deep learned Artificial Neural-Network
...Show More Authors

     Many authors investigated the problem of the early visibility of the new crescent moon after the conjunction and proposed many criteria addressing this issue in the literature. This article presented a proposed criterion for early crescent moon sighting based on a deep-learned pattern recognizer artificial neural network (ANN) performance. Moon sight datasets were collected from various sources and used to learn the ANN. The new criterion relied on the crescent width and the arc of vision from the edge of the crescent bright limb. The result of that criterion was a control value indicating the moon's visibility condition, which separated the datasets into four regions: invisible, telescope only, probably visible, and certai

... Show More
Preview PDF
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Using Fuzzy Clustering to Detect the Tumor Area in Stomach Medical Images
...Show More Authors

Although the number of stomach tumor patients reduced obviously during last decades in western countries, but this illness is still one of the main causes of death in developing countries. The aim of this research is to detect the area of a tumor in a stomach images based on fuzzy clustering. The proposed methodology consists of three stages. The stomach images are divided into four quarters and then features elicited from each quarter in the first stage by utilizing seven moments invariant. Fuzzy C-Mean clustering (FCM) was employed in the second stage for each quarter to collect the features of each quarter into clusters. Manhattan distance was calculated in the third stage among all clusters' centers in all quarters to disclosure of t

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref