Value Engineering is an analytical study on projects or services using a specific procedure and a multidisciplinary working group, works for the identification and classification of the project functions; either for a better perfuming of these functions or to lessen the total project cost or the two together. Value Engineering main aim is on finding innovative alternatives, without effecting the basic requirements of the project, its methodology based on the functional balancing between the three elements of production "performance, quality and cost". This methodology based on the "functional analysis", had shown high possibilities in solving any problem facing the production procedure , achieve better investment for available resources and cost reduction without affecting the goal or function of the project, in addition to its ability in giving fast results and suggestions. On that background Value Engineering has been nominated to improve the architectural work by generate creative ideas, upgrading the designed and accomplished projects and to enhance the project firmness, functional and aesthetic efficiency. The research, depending on Value Engineering methodology as a road map, attempts to get some results and recommendations for the development and enhancement of the architectural work and its value.
NH3 gas sensor was fabricated based on deposited of Functionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) suspension on filter paper substrates using suspension filtration method. The structural, morphological and optical properties of the MWCNTs film were characterized by XRD, AFM and FTIR techniques. XRD measurement confirmed that the structure of MWCNTs is not affected by the preparation method. The AFM images reflected highly ordered network in the form of a mat. The functional groups and types of bonding have appeared in the FTIR spectra. The fingerprint (C-C stretch) of MWCNTs appears in 1365 cm-1, and the backbone of CNTs observed at 1645 cm-1. A homemade sensi
... Show MoreThe ï¤- Multiple mixing ratios of ï§-transitions from levels of 56Fe populated in 56 56 ( , ) Fe n n Fe ï§ ï‚¢ reactions are calculated by using const. S.T.M. This method has been used in other works [3,7] but with pure transition or with transitions that can be considered as pure transitionsØŒ in our work we used This method for mixed ï§ - transitions in addition to pure ï§ - transitions. The experimental angular distribution coefficients a2 was used from previous works [1] in order to calculet ï¤- values. It is clear from the results that the ï¤- values are in good agreement or consistent, within associated errors, with those reported previously [1]. The discrepancies that occur
... Show MoreThis paper presents a computer simulation model of a thermally activated roof (TAR) to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model) for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time
... Show MoreThis study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis
... Show MoreErratum for Organic acid concentration thresholds for ageing of carbonate minerals: Implications for CO2 trapping/storage.
This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANO
... Show MoreA new, simple, sensitive and fast developed method was used for the determination of methyldopa in pure and pharmaceutical formulations by using continuous flow injection analysis. This method is based on formation a burgundy color complex between methyldopa andammonium ceric (IV) nitrate in aqueous medium using long distance chasing photometer NAG-ADF-300-2. The linear range for calibration graph was 0.05-8.3 mmol/L for cell A and 0.1-8.5 mmol/L for cell B, and LOD 952.8000 ng /200 µL for cell A and 3.3348 µg /200 µL for cell B respectively with correlation coefficient (r) 0.9994 for cell A and 0.9991 for cell B, RSD % was lower than 1 % for n=8. The results were compared with classical method UV-Spectrophotometric at λ max=280 n
... Show More