Preferred Language
Articles
/
joe-970
Robust Adaptive Sliding Mode Controller for a Nonholonomic Mobile Platform
...Show More Authors

In this paper, a robust adaptive sliding mode controller is designed for a mobile platform trajectory tracking.  The mobile platform is an example of a nonholonomic mechanical system. The presence of holonomic constraints reduces the number of degree of freedom that represents the system model, while the nonholonomic constraints reduce the differentiable degree of freedom. The mathematical model was derived here for the mobile platform, considering the existence of one holonomic and two nonholonomic constraints imposed on system dynamics. The partial feedback linearization method was used to get the input-output relation, where the output is the error functions between the position of a certain point on the platform and the desired path. The dynamic error model was considered uncertain and subjected to friction torques on the wheels. The adaptive sliding mode control was utilized to design a robust controller, that will force the platform to follow the desired trajectory. The simulation of the proposed controller was done via MATLAB to reveal the ability of the robust adaptive sliding mode controller applied as a trajectory tracker for various path shapes.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Mar 01 2016
Journal Name
Journal Of Engineering
Design and Simulation of Sliding Mode Fuzzy Controller for Nonlinear System
...Show More Authors

Sliding Mode Controller (SMC) is a simple method and powerful technique to design a robust controller for nonlinear systems. It is an effective tool with acceptable performance. The major drawback is a classical Sliding Mode controller suffers from the chattering phenomenon which causes undesirable zigzag motion along the sliding surface. To overcome the snag of this classical approach, many methods were proposed and implemented. In this work, a Fuzzy controller was added to classical Sliding Mode controller in order to reduce the impact chattering problem. The new structure is called Sliding Mode Fuzzy controller (SMFC) which will also improve the properties and performance of the classical Sliding Mode control

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 01 2019
Journal Name
Journal Of Engineering
Speed Controller of Three Phase Induction Motor Using Sliding Mode Controller
...Show More Authors

In this paper, an adaptive integral Sliding Mode Control (SMC) is employed to control the speed of Three-Phase Induction Motor. The strategy used is the field oriented control as ac drive system. The SMC is used to estimate the frequency that required to generates three phase voltage of Space Vector Pulse Width Modulation (SVPWM) invertor . When the SMC is used with current controller, the quadratic component of stator current is estimated by the controller. Instead of using current controller, this paper proposed estimating the frequency of stator voltage since that the slip speed is function of the quadratic current . The simulation results of using the SMC showed that a good dynamic response can be obtained under load

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jun 18 2024
Journal Name
2024 Ieee 33rd International Symposium On Industrial Electronics (isie)
An Adaptive Integral Sliding Mode Control for Disturbed Servo Motor Systems
...Show More Authors

Abstract-Servo motors are important parts of industry automation due to their several advantages such as cost and energy efficiency, simple design, and flexibility. However, the position control of the servo motor is a difficult task because of different factors of external disturbances, nonlinearities, and uncertainties. To tackle these challenges, an adaptive integral sliding mode control (AISMC) is proposed, in which a novel bidirectional adaptive law is constructed to reduce the control chattering. The proposed control has three steps to be designed. Firstly, a full-order integral sliding manifold is designed to improve the servo motor position tracking performance, in which the reaching phase is eliminated to achieve the invariance of

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Ieee Transactions On Industrial Electronics
Singular Perturbation-Based Adaptive Integral Sliding Mode Control for Flexible Joint Robots
...Show More Authors

The flexible joint robot (FJR) typically experiences parametric variations, nonlinearities, underactuation, noise propagation, and external disturbances which seriously degrade the FJR tracking. This article proposes an adaptive integral sliding mode controller (AISMC) based on a singular perturbation method and two state observers for the FJR to achieve high performance. First, the underactuated FJR is modeled into two simple second-order fast and slow subsystems by using Olfati transformation and singular perturbation method, which handles underactuation while reducing noise amplification. Then, the AISMC is proposed to effectively accomplish the desired tracking performance, in which the integral sliding surface is designed to reduce cha

... Show More
View Publication
Scopus (22)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Wed May 31 2017
Journal Name
Journal Of Engineering
Design and Implementation of Classical Sliding Mode Controller for Ball and Plate System
...Show More Authors

Ball and Plate (B&P) system is a benchmark system in the control engineering field that has been used to verify many control methods. In this paper the design of a sliding mode . controller has been investigated and verified in real-time via implementation on a real ball and plate system hardware. The mathematical model has been derived and the necessary parameters have been measured. The sliding mode controller has been designed based on the obtained mathematical model. The resulting controller has been implemented using the Arduino Mega 2560 and a ball and plate system built completely from scratch. The Arduino has been programmed by the Arduino support target for Simulink. Three test signals has been used for verification purposes

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2017
Journal Name
Proceeding Of The 1st International Conference On Recent Trends Of Engineering Sciences And Sustainability
Design of a Fractional Order Sliding Mode Controller for Twin Rotor Aerodynamic System
...Show More Authors

This paper proposes a new structure for a Fractional Order Sliding Mode Controller (FOSMC) to control a Twin Rotor Aerodynamic System (TRAS). The new structure is composed by defining two 3-dimensional sliding mode surfaces for the TRAS model and introducing fractional order derivative integral in the state variables as well as in the control action. The parameters of the controller are determined so as to minimize the Integral of Time multiplied by Absolute Error (ITAE) performance index. Through comparison, this controller outperforms its integer counterpart in many specifications, such as reducing the delay time, rise time, percentage overshoot, settling time, time to reach the sliding surface, and amplitude of chattering in control inpu

... Show More
Publication Date
Wed Nov 22 2023
Journal Name
Actuators
Practical Adaptive Fast Terminal Sliding Mode Control for Servo Motors
...Show More Authors

Position control of servo motor systems is a challenging task because of inevitable factors such as uncertainties, nonlinearities, parametric variations, and external perturbations. In this article, to alleviate the above issues, a practical adaptive fast terminal sliding mode control (PAFTSMC) is proposed for better tracking performance of the servo motor system by using a state observer and bidirectional adaptive law. First, a smooth-tangent-hyperbolic-function-based practical fast terminal sliding mode control (PFTSM) surface is designed to ensure not only fast finite time tracking error convergence but also chattering reduction. Second, the PAFTSMC is proposed for the servo motor, in which a two-way adaptive law is designed to further s

... Show More
View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Ieee Transactions On Systems, Man, And Cybernetics: Systems
Design of Robust Terminal Sliding Mode Control for Underactuated Flexible Joint Robot
...Show More Authors

Flexible joint robot (FJR) manipulators can offer many attractive features over rigid manipulators, including light weight, safe operation, and high power efficiency. However, the tracking control of the FJR is challenging due to its inherent problems, such as underactuation, coupling, nonlinearities, uncertainties, and unknown external disturbances. In this article, a terminal sliding mode control (TSMC) is proposed for the FJR system to guarantee the finite-time convergence of the systems output, and to achieve the total robustness against the lumped disturbance and estimation error. By using two coordinate transformations, the FJR dynamics is turned into a canonical form. A cascaded finite-time sliding mode observer (CFTSMO) is construct

... Show More
View Publication
Scopus (57)
Crossref (53)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2017
Journal Name
2017 Ieee 56th Annual Conference On Decision And Control (cdc)
Hierarchical non-singular terminal sliding mode controller for a single link flexible joint robot manipulator
...Show More Authors

—This paper studies the control motion of a single link flexible joint robot by using a hierarchical non-singular terminal sliding mode controller (HNTSMC). In comparison to the conventional sliding mode controller (CSMC), the proposed algorithm (NTSMC) not only can conserve characteristics of the convention CSMC, such as easy implementation, guaranteed stability and good robustness against system uncertainties and external disturbances, but also can ensure a faster convergence rate of the systems states to zero in a finite time and singularity free. The flexible joint robot (FJR) is a two degree of freedom (2DOF) nonlinear and underactuated system. The system here is modeled as a fourth order system by using Lagrangian method. Based on t

... Show More
View Publication
Scopus (10)
Crossref (9)
Scopus Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
High Order Sliding Mode Observer-Based Output Feedback Controller Design For Electro-Hydraulic System
...Show More Authors

A perturbed linear system with property of strong observability ensures that there is a sliding mode observer to estimate the unknown form inputs together with states estimation. In the case of the electro-hydraulic system with piston position measured output, the above property is not met. In this paper, the output and its derivatives estimation were used to build a dynamic structure that satisfy the condition of strongly observable. A high order sliding mode observer (HOSMO) was used to estimate both the resulting unknown perturbation term and the output derivatives. Thereafter with one signal from the whole system (piton position), the piston position make tracking to desire one with a simple linear output feedback controller after ca

... Show More
View Publication Preview PDF
Crossref