Preferred Language
Articles
/
joe-970
Robust Adaptive Sliding Mode Controller for a Nonholonomic Mobile Platform
...Show More Authors

In this paper, a robust adaptive sliding mode controller is designed for a mobile platform trajectory tracking.  The mobile platform is an example of a nonholonomic mechanical system. The presence of holonomic constraints reduces the number of degree of freedom that represents the system model, while the nonholonomic constraints reduce the differentiable degree of freedom. The mathematical model was derived here for the mobile platform, considering the existence of one holonomic and two nonholonomic constraints imposed on system dynamics. The partial feedback linearization method was used to get the input-output relation, where the output is the error functions between the position of a certain point on the platform and the desired path. The dynamic error model was considered uncertain and subjected to friction torques on the wheels. The adaptive sliding mode control was utilized to design a robust controller, that will force the platform to follow the desired trajectory. The simulation of the proposed controller was done via MATLAB to reveal the ability of the robust adaptive sliding mode controller applied as a trajectory tracker for various path shapes.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Mar 01 2022
Journal Name
Iraqi Journal Of Agricultural Sciences
CORRELATION OF TMPRSS2-ERG GENE FUSION STATUS WITH CLINICOPATHOLOGICAL CHARACTERISTICS IN PROSTATE CANCER OF IRAQI PATIENTS
...Show More Authors

Publication Date
Sat Sep 01 2018
Journal Name
Polyhedron
Novel dichloro (bis {2-[1-(4-methylphenyl)-1H-1, 2, 3-triazol-4-yl-κN3] pyridine-κN}) metal (II) coordination compounds of seven transition metals (Mn, Fe, Co, Ni, Cu, Zn and Cd)
...Show More Authors

Preview PDF