A study was performed to evaluate heavy metals removal from sewage sludge using lime. The processes of stabilization using alkaline chemicals operating on a simple principle of raising pH to 12 or higher, with sufficient mixing and suitable contact time to ensure that immobilization can reduce heavy metals. A 0.157 m3 tank was designed to treat Al-Rustemeyia wastewater treatment plant sludge. Characteristics of raw sludge were examined through two parameters: pH and heavy metal analysis. Different lime doses of (0- 25) g CaO/100 g sludge were mixed manually with raw sludge in a rotating drum. The samples were analyzed two hours after mixing. pH and heavy metals results were compared with EPA and National Iraqi Standard (NIS). Results showed as lime was added, the concentration of heavy metals decreases the higher the dose, the less heavy metals concentrations in the sludge. Although the concentration of heavy metals in the sludge was among the determinants according to the US Environmental Protection Agency, the results showed that 750 g of lime per 3 kg of sludge had reduced the concentration of heavy metals zinc from (662.934) mg/kg sludge to (452.998) mg/kg sludge, copper from (113.101) mg/kg sludge to (64.981) mg/kg sludge, lead from (91.215) mg/kg sludge to (53.307) mg/kg sludge, nickel from 107.257 mg/kg sludge to (50.478) mg/kg sludge, molybdenum from (13.743) mg/kg sludge to (8.724) mg/kg sludge). At the same time, the dose of 450 g lime per 3 kg of sludge had reduced the concentration of chromium from (110.577) mg/kg sludge to (0) mg/kg sludge.
The current study aims at using non-hatchable artemia eggs of local origin and making use of these eggs by decapsulating and presenting them as food for the larvae of the Cyprinus carpio as a source of animal protein with high nutritional value instead of throwing them away. The results showed that the second parameter (A2) was highly significant at the level (P≤0.05) in the growth rates of the larvae that were fed on decapsulated artemia eggs alone, and it was better than the two control parameters (A1), in which the larvae were fed with feed designated for Cyprinus carpio fish. It also outperformed the third parameter (A3), in which the feed was mixed with artemia eggs with 50% decapsulation, which also outperformed the control paramete
... Show MoreUrinary stones are one of the most common painful disorders of the urinary system. Four new technologies have transformed the treatment of urinary stones: Electrohydraulic lithotripsy, ultrasonic lithotripsy, extracorporeal shock wave lithotripsy, and laser lithotripsy.The purpose of this study is to determine whether pulsed holmium laser energy is an effective method for fragmenting urinary tract stones in vitro, and to determine whether stone composition affects the efficacy of holmium laser lithotripsy. Human urinary stones of known composition with different sizes, shapes and colors were used for this study. The weight and the size of each stone were measured. The surgical laser system which used in our study is Ho:YAG laser(2100nm)
... Show MoreThe "Nudge" Theory is considered one of the most recent theories, which is clear in the economic, health, and educational sectors, due to the intensity of studies on it and its applications, but it has not yet been included in crime prevention studies. The use of Nudge theory appears to enrich the theory in the field of crime prevention, and to provide modern, effective, and implementable mechanisms.
The study deals with the "integrative review" approach, which is a distinctive form of research that generates new knowledge on a topic through reviewing, criticizing, and synthesizing representative literature on the topic in an integrated manner so that new frameworks and perspectives are created around it.
The study is bas
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreCommunity detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a
... Show MoreVariable selection is an essential and necessary task in the statistical modeling field. Several studies have triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a researcher needs to ask himself/herself what are the most significant variables that should be used to describe a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute Shrinkage
... Show MoreA two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was
... Show More