Storage of rainwater within the root depth zone is one of the modern ways to increase plant production. Subsurface water retention technology was applied to assess improving values of crop yield and crop water use efficiency, applying a membrane made of low-density polyethylene trough installed below the crop root zone. The goal of this paper is to assess that the retention of rainwater above the membrane can improve the crop yield and crop water use efficiency values for winter wheat. The experiment was conducted in open field, within Joeybeh Township, located in east of the Ramadi City, in Anbar Province, in winter growing season 2018-2019. Two plots T1 (with membrane trough) and T2 (without membrane) were used for the comparison and cultivated with winter wheat, where the rainwater was only the source of irrigation. At the end of the harvest stage the obtained results of crop yield and crop water use efficiency for plots T1 and T2 were; 0.35 kg/m2 and 1.66 kg/m3, and 0.28 kg/m2 and 1.28 kg/m3, respectively. The increasing value of crop yield and crop water use efficiency in plot T1 was about 25 % and 30 %, respectively more than plot T2. Benefits of the installation of membrane trough are to keep soil moisture for longer times, prevent the cracks of the soil surface and reduce the deep percolation losses.
This work explores the advancement and potential of solar‐powered humidification–dehumidification (HDH) desalination systems, addressing the critical challenge of global water scarcity. Emphasizing solar‐powered humidifiers in HDH systems presents an innovative solution per the urgent demand for sustainable freshwater sources utilizing abundant energy resources. This work reviews various humidifier designs, pointing out their crucial role in the efficiency and yield of HDH desalination units and their operational, maintenance, and scaling issues. Key factors, such as design effectiveness, water‐vapor capacity, and material selection, are assessed to understand their impact on the system's ove
This paper including a gravitational lens time delays study for a general family of lensing potentials, the popular singular isothermal elliptical potential (SIEP), and singular isothermal elliptical density distribution (SIED) but allows general angular structure. At first section there is an introduction for the selected observations from the gravitationally lensed systems. Then section two shows that the time delays for singular isothermal elliptical potential (SIEP) and singular isothermal elliptical density distributions (SIED) have a remarkably simple and elegant form, and that the result for Hubble constant estimations actually holds for a general family of potentials by combining the analytic results with data for the time dela
... Show MoreComputer systems and networks are being used in almost every aspect of our daily life; as a result the security threats to computers and networks have also increased significantly. Traditionally, password-based user authentication is widely used to authenticate legitimate user in the current system0T but0T this method has many loop holes such as password sharing, shoulder surfing, brute force attack, dictionary attack, guessing, phishing and many more. The aim of this paper is to enhance the password authentication method by presenting a keystroke dynamics with back propagation neural network as a transparent layer of user authentication. Keystroke Dynamics is one of the famous and inexpensive behavioral biometric technologies, which identi
... Show MoreIn this paper the centralizing and commuting concerning skew left -derivations and skew left -derivations associated with antiautomorphism on prime and semiprime rings were studied and the commutativity of Lie ideal under certain conditions were proved.
Recently, Image enhancement techniques can be represented as one of the most significant topics in the field of digital image processing. The basic problem in the enhancement method is how to remove noise or improve digital image details. In the current research a method for digital image de-noising and its detail sharpening/highlighted was proposed. The proposed approach uses fuzzy logic technique to process each pixel inside entire image, and then take the decision if it is noisy or need more processing for highlighting. This issue is performed by examining the degree of association with neighboring elements based on fuzzy algorithm. The proposed de-noising approach was evaluated by some standard images after corrupting them with impulse
... Show MoreThis work aims to develop a secure lightweight cipher algorithm for constrained devices. A secure communication among constrained devices is a critical issue during the data transmission from the client to the server devices. Lightweight cipher algorithms are defined as a secure solution for constrained devices that require low computational functions and small memory. In contrast, most lightweight algorithms suffer from the trade-off between complexity and speed in order to produce robust cipher algorithm. The PRESENT cipher has been successfully experimented on as a lightweight cryptography algorithm, which transcends other ciphers in terms of its computational processing that required low complexity operations. The mathematical model of
... Show MoreLet M is a Г-ring. In this paper the concept of orthogonal symmetric higher bi-derivations on semiprime Г-ring is presented and studied and the relations of two symmetric higher bi-derivations on Г-ring are introduced.