Storage of rainwater within the root depth zone is one of the modern ways to increase plant production. Subsurface water retention technology was applied to assess improving values of crop yield and crop water use efficiency, applying a membrane made of low-density polyethylene trough installed below the crop root zone. The goal of this paper is to assess that the retention of rainwater above the membrane can improve the crop yield and crop water use efficiency values for winter wheat. The experiment was conducted in open field, within Joeybeh Township, located in east of the Ramadi City, in Anbar Province, in winter growing season 2018-2019. Two plots T1 (with membrane trough) and T2 (without membrane) were used for the comparison and cultivated with winter wheat, where the rainwater was only the source of irrigation. At the end of the harvest stage the obtained results of crop yield and crop water use efficiency for plots T1 and T2 were; 0.35 kg/m2 and 1.66 kg/m3, and 0.28 kg/m2 and 1.28 kg/m3, respectively. The increasing value of crop yield and crop water use efficiency in plot T1 was about 25 % and 30 %, respectively more than plot T2. Benefits of the installation of membrane trough are to keep soil moisture for longer times, prevent the cracks of the soil surface and reduce the deep percolation losses.
The Cenomanian – Turronian sedimentary succession in the south Iraq oil fields, including Ahmadi, Rumaila, Mishrif and Khasib formations have undergone into high-resolution reservoir-scale genetic sequence stratigraphic analysis. Some oil-wells from Majnoon and West-Qurna oil fields were selected as a representative case for the regional sequence stratigraphic analysis. The south Iraqi Albian – Cenomanian – Turronian succession of 2nd-order depositional super-sequence has been analyzed based on the Arabian Plate chronosequence stratigraphic context, properly distinguished by three main chrono-markers (The maximum flooding surface, MFS-K100 of the upper shale member of Nahr Umr Formation, MFS-K140 of the upper Mishrif carbonate
... Show MoreThis study successfully synthesized high-performance photodetectors based on Ag-WO3 core–shell heterostructures using a simple and economical two-step pulsed laser ablation in water method and has investigated the electrical characteristics of the Ag@WO3 nanocomposite heterojunction. The Hall effect tests indicate that the synthesized Ag@WO3 exhibits n-type conduction with a Hall mobility of 1.25 × 103 cm2V-1S-1. Dark current–voltage properties indicated that the created heterojunctions displayed rectification capabilities, with the highest rectification factor of around 1.71 seen at a 5 V bias. A photodetector’s responsivity reveals the existence of two response peaks, which are situated in the ultraviolet and visible region. The ph
... Show MoreThe biometric-based keys generation represents the utilization of the extracted features from the human anatomical (physiological) traits like a fingerprint, retina, etc. or behavioral traits like a signature. The retina biometric has inherent robustness, therefore, it is capable of generating random keys with a higher security level compared to the other biometric traits. In this paper, an effective system to generate secure, robust and unique random keys based on retina features has been proposed for cryptographic applications. The retina features are extracted by using the algorithm of glowworm swarm optimization (GSO) that provides promising results through the experiments using the standard retina databases. Additionally, in order t
... Show MoreScheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating opti
... Show MoreUltraviolet photodetectors have been widely utilized in several applications, such as advanced communication, ozone sensing, air purification, flame detection, etc. Gallium nitride and its compound semiconductors have been promising candidates in photodetection applications. Unlike polar gallium nitride-based optoelectronics, non-polar gallium nitride-based optoelectronics have gained huge attention due to the piezoelectric and spontaneous polarization effect–induced quantum confined-stark effect being eliminated. In turn, non-polar gallium nitride-based photodetectors portray higher efficiency and faster response compared to the polar growth direction. To date, however, a systematic literature review of non-polar gallium nitride-
... Show MoreReduce the required time for measuring the permeability of clayey soils by using new manufactured cell
The present study dealt with the removal of methylene blue from wastewater by using peanut hulls (PNH) as adsorbent. Two modes of operation were used in the present work, batch mode and inverse fluidized bed mode. In batch experiment, the effect of peanut hulls doses 2, 4, 8, 12 and 16 g, with constant initial pH =5.6, concentration 20 mg/L and particle size 2-3.35 mm were studied. The results showed that the percent removal of methylene blue increased with the increase of peanut hulls dose. Batch kinetics experiments showed that equilibrium time was about 3 hours, isotherm models (Langmuir and Freundlich) were used to correlate these results. The results showed that the (Freundlich) model gave the best fitting for adsorption capacity. D
... Show More