This study aims to model the flank wear prediction equation in metal cutting, depending on the workpiece material properties and almost cutting conditions. A new method of energy transferred solution between the cutting tool and workpiece was introduced through the flow stress of chip formation by using the Johnson-Cook model. To investigate this model, an orthogonal cutting test coupled with finite element analysis was carried out to solve this model and finding a wear coefficient of cutting 6061-T6 aluminum and the given carbide tool.
The research demonstrates new species of the games by applying separation axioms via sets, where the relationships between the various species that were specified and the strategy of winning and losing to any one of the players, and their relationship with the concepts of separation axioms via sets have been studied.
This study included prepared samples of epoxy reinforced by the novolac , aluminum , glass powder and epoxy reinforced by aluminum , glass powder and epoxy alone .They are used as reinforced materials of volum fraction amounting 40% . The mechanical properties inclouded ( tensile , compressive and wear) where the wear test inclouded different applied loads (5,10,15) . From the results showed the epoxy reinforced by aluminum and glass powder has higher compressive strength (56.91) Mpa and higher tensile strength (132.2) Mpa .But the epoxy alone has higher wear rate and the epoxy reinforced by aluminum and glass powder which have higher elasticity of modulus from the tensile test (315.7) Mpa
Our goal from this work is to find the linear prediction of the sum of two Poisson process
) ( ) ( ) ( t Y t X t Z + = at the future time 0 ), ( ≥ + τ τ t Z and that is when we know the values of
) (t Z in the past time and the correlation function ) (τ βz
Magnesium aluminum silicate of glass ceramic having different amounts of magnesium fluoride in the range (0-13.2)%. Thermal expansion coefficient and micro hardness of the base glass and glass ceramic samples are seen to be interdependent but due to the multi – component system, the behaviour is seen to be somewhat complex, with an increase in Mg F2 content. The thermal expansion coefficient increase and micro harness decrease, numerical simulation of thermal expansion and hardness is useful in this study, L2 – regression is used to calculate the two parameters associated with each glass component, by comparing the measured parameters and the calculated parameters ,it is useful to use such a method to calculate the quantity
... Show MoreThe research aims to study the corrosion of aluminum alloy(6061) in 0.6 mol. dm-3 NaCl solution in base medium was examined with out and with Gallic acid as environmentally – friendly corrosion inhibitor at temperature range (298-313)K. The inhibitive action of gallic acid on corrosion of aluminum alloy(6061) in KOH solution was examined through electrochemical polarization method using potentiostatic technique and surface analysis by optical microscopy, Polarization measurements indicate that the examined compound act as a mixed type inhibitor. Results appeared that the inhibition occurs through adsorption of the inhibitor molecules on the metal surface and it was obeyed
... Show MoreThis paper focuses on the optimization of drilling parameters by utilizing “Taguchi method” to obtain the minimum surface roughness. Nine drilling experiments were performed on Al 5050 alloy using high speed steel twist drills. Three drilling parameters (feed rates, cutting speeds, and cutting tools) were used as control factors, and L9 (33) “orthogonal array” was specified for the experimental trials. Signal to Noise (S/N) Ratio and “Analysis of Variance” (ANOVA) were utilized to set the optimum control factors which minimized the surface roughness. The results were tested with the aid of statistical software package MINITAB-17. After the experimental trails, the tool diameter was found as the most important facto
... Show MoreMaintenance of machine tools can be improved significantly by analyzing the operating of manufacturing process with the real-time monitoring system for 3-D single point deformation measurements. Therefore, the process of manufacturing could be optimized with less cost. Recently, wireless technology and internet of things (IOT) applied on intelligent machine has witnessed a significant advance with augmented virtuality, the analysis and the process certainly would contribute to enhance the intelligence of that machine. This paper presents a group of the wireless sensors and 3D animation technologies for data monitoring and analyzing. Three degree of freedom robotic hand structure has been selected as a prototype to be form the process of the
... Show More