The Karolinka earth-fill dam was constructed between 1977 and 1984 on the Stanovnice river above the town of Karolinka in the region of Vsetínsko in Czech Republic. Because of leakage on the downstream dam face due to technological indiscipline when filling dam layers during the dam construction stage, there were some steps to improve state dam safety. The final rehabilitation is to construct the diaphragm walls from self-hardening cement-bentonite suspension along the length of the dam. In addition to connecting the gallery and abutment (2 × 25 m long) by using jet piles. The article presents numerical modeling of safety factor evaluation associated with the state of the dam body and foundation; before, and after sealing. Also, studying the effect of dam height on its stability by using finite element method is performed by the Plaxis 3D program in the case study of Karolinka dam. It is concluded that measured data shows good agreement with the computed result.
ABSTRACT In dam construction stages when an earth embankment has retained a reservoir with constant water surface elevation for a long time, seepage conditions within the embankment will be reach a steady state. If it is necessary to drain the reservoir quickly, the pore-water pressures in the embankment may remain relatively high while the stabling effect of the reservoir's weight along the upstream (U/S) side for the embankment has removed. This process is referring to as "Rapid Drawdown" and may be cause instability in the upstream (U/S) face of the embankment. Kongele dam is one of the proposed earth dams to be implement within the current plan in Iraq. The authors study pore water pressure and the effect of rapid drawdown for the dam d
... Show MoreThe Halabja earthquake occurred on 12/11/2017 in Iraq, with a magnitude of 7.3 Mw, which happened in the Iraqi-Iranian borders. This earthquake killed and injured many people in the Kurdish region in the north of the country. There is no natural disaster more dangerous than earthquake, especially it occurs without warning, great attention must be paid to the impact of earthquakes on the soil and preparing for a wave of earthquakes. Numerical modeling using specific elements is considered a powerful tool to investigate the required behavior of structures in Geotechnical engineering, and the main objective of this is to assess the response of the Al-Wand dam to the Halabja earthquake, as this dam is located in an area that has been su
... Show MoreThis study is directed at investigating the liquefaction potential within earth dams using numerical modelling by two-dimensional finite element analyses method for considering the Makhool earth dam on the Tigris River in Iraq. The effect of peak ground acceleration of 0.02g, 0.04g, 0.06g, and 0.08g is viewed for a shell, and the crest is presented for all scaled earthquake duration 25 s, 50 s, 75 s, and 100 s. The current study program comprises selecting a representative history point within the Makhool earth dam as a case study. Many points were allocated at different locations within the shell and crest to observe the fluctuation in the factor of safety against liquefaction. The seepage analysis results viewed graphically for the operat
... Show MoreThis study examines the vibrations produced by hydropower operations to improve embankment dam safety. This study consists of two parts: In the first part, ANSYS-CFX was used to generate a three-dimensional (3-D) finite volume (FV) model to simulate a vertical Francis turbine unit in the Mosul hydropower plant. The pressure pattern result of the turbine model was transformed into the dam body to show how the turbine unit's operation affects the dam's stability. The upstream reservoir conditions, various flow rates, and fully open inlet gates were considered. In the second part of this study, a 3-D FE Mosul dam model was simulated using an ANSYS program. The operational turbine model's water pressure pattern is conveyed t
... Show MoreThe seismic can be threatened the stability of the flexible body of the earth dam and can cause completely damaged or deformation on their embankment. Therefore, a geotechnical engineer needs to know the effect of earthquakes on earth structures. The change in the seismic zone that recently Iraq affected is the reason for this research, in general, in 2017, the whole of Iraq, and in particular the region, where the Al-Wand earth dam (the subject of the study) is located, was exposed to several earthquakes. This research project mainly aims to study the behavior of Al-Wand earth dam under seismic load in different conditions by simulating Al-Wand earth dam through numerical modeling an
Seepage through earth dams is one of the most popular causes for earth dam collapse due to internal granule movement and seepage transfer. In earthen dams, the core plays a vital function in decreasing seepage through the dam body and lowering the phreatic line. In this research, an alternative soil to the clay soil used in the dam core has been proposed by conducting multiple experiments to test the permeability of silty and sandy soil with different additives materials. Then the selected sandy soil model was used to represent the dam experimentally, employing a permeability device to measure the amount of water that seeps through the dam's body and to represent the seepage line. A numerical model was adopted using Geo-Studio software i
... Show MoreSeepage occurs under or inside structures or in the place, where they come into contact with the sides under the influence of pressure caused by the difference in water level in the structure U / S and D / S. This paper is designed to model seepage analysis for Kongele (an earth dam) due to its importance in providing water for agricultural projects and supporting Tourism sector. For this purpose, analysis was carried out to study seepage through the dam under various conditions. Using the finite element method by computer program (Geo-Studio) the dam was analysed in its actual design using the SEEP / W 2018 program. Several analyses were performed to study the seepage across Kongele
Finite Element Approach is employed in this research work to solve the governing differential equations related to seepage via its foundation's dam structure. The primary focus for this reason is the discretization of domain into finite elements through the placement of imaginary nodal points and the discretization of governing equations into an equation system; An equation for each nodal point or part, and unknown variables are solved. The SEEP / W software (program) is a sub-program of the Geo-Studio software, which is used by porous soil media to compensate for the problems of seepage. To achieve the research goals, a study was carried out on Hemrin dam, which located in the Diyala River 100 km northeast of Baghdad, Iraq. Thus, o
... Show More