Water is the basis of the existence of all kinds of life, so obtaining it with good quality represents a challenge to human existence and development especially in the desert and remote cities because these areas contain small populations and water purification requires great materials and huge amounts of fossil fuels resulting pollution of the environment. Cheap and environmentally friendly desalination methods have been done by using solar distillations. Passive solar stills have low yields, so in this research, the problem is overcome by connecting four heat pipes which are installed on the parabolic concentrator reflector with passive solar still to increase the temperature of hot water to more than 90°C, as a result, the yield increases. An extensive theory is studied to manufacture two systems: the first consists of passive solar still has dimensions are 1000 mm × 500 mm and the glass cover tilted at the angle 33°. It is approximately equal to the latitude of the city of Baghdad [(Latitude: (33.34° N) Longitude: (44.4° E)]. This gives 5.04 kg/m2.day, the second solar still which is associated with 4 heat pipes gives a water yield of about 7. 2 kg/m2.day. This means that the improvement in the daily production of distilled water is 50 % over the productivity of the passive solar still All results above are calculated when the depth of water is 1. 5 cm. In addition, heat balance for each part of the system is achieved and calculations of the performance of the solar still are done by using the program in the language of Matlab. All these results are compared with the experimental ones of different depths of water (1.5 cm, 2 cm, 3 cm, and 4 cm) which are taken from the experimental part to ensure the system reliability at different weather conditions in Baghdad throughout the year and to give a good approach. The system associated with heat pipes gives promising results and can be widely used for its abundant productivity and durability of its components. (TDS) and (pH) value are carried out in the laboratory and it is found that water is safe and pure for drinking.
Desulfurization of a simulated diesel fuel by different adsorbents was studied in a fixed-bed adsorption process operated at ambient temperature and pressure. Three different adsorption beds were used, commercial activated carbon, Cu-Y zeolite, and layered bed of 15wt% activated carbon followed by Cu-Y zeolite.Initially Y-zeolite was prepared from Iraqi rice husk and then impregnated with copper. In general, the adsorbents tested for total sulfur adsorption capacity at break through followed the order Ac/Cu-Y zeolite>Cu-Y zeolite>Ac. The best adsorbent, Ac/Cu-Y zeolite is capable of producing more than 30 cm3 of simulated diesel fuel per gram of adsorbent with a weighted average content of 5 ppm-S, while Cu-Y zeolite producing of
... Show MoreIn this study, the effect of design parameters such as pipe diameter, pipe wall thickness, pipe material and the effect of fluid velocity on the natural frequency of fluid-structure interaction in straight pipe conveying fully developed turbulent flow were investigate numerically,analytically and experimentally. Also the effect of support conditions, simply-simply and clamped-clamped was investigated. Experimentally, pipe vibrations were characterized by accelerometer mounted on the pipe wall. The natural frequencies of vibration were analyzed by using Fast Fourier Transformer (FFT). Five test sections of two different pipe diameters of 76.2
mm and 50.8 mm with two pipe thicknesses of 3.7 mm and 2.4 mm and two pipe materials,stainles
The two body model of (Core+n) within the radial wave functions of the cosh potential has been used to investigate the ground state features such as the proton, neutron and matter densities, the root mean square (RMS) nuclear proton, neutron, charge and mass radii of unstable neutron-rich 14B, 15C, 19C and 22N nuclei. The calculated results show that the two body model with the radial wave functions of the cosh potential succeeds in reproducing neutron halo in these nuclei.
Synthesis of 2-(4-Acetyl-phenyl)-4-nitro-isoindole-1, 3-dione chalcones were performed by fusion of 3-nitro phthalic anhydride with p-aminoacetophenone. Then the later was grinded with different aromatic aldehydes in the presence of sodium hydroxide to produce new chalcones derivatives A3-10 without using any solvent formation of new N- arylphthailimide chalcones were confirmed by FT-IR,1HNMR, 13CNMR spectroscopy and all final compounds were tested for their antifungal and antibacterial activity some of them showed more biological activity than the standard drugs
γ-Al2O3–NPs were synthesized by a green synthesis process based on Boswellia carterii resin extract and aluminum sulphate in an alkaline medium. Boswellia carterii resin extract is a significant reducing and stabilizing agent for synthesizing γ-Al2O3–NPs.Several techniques, including Fourier–transform infrared (FT-IR), UV–visible spectroscopy, x-ray diffraction, electron microscopy (XRD), energy dispersive x-ray (EDX), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and atomic force microscopy (AFM), were utilized to investigate the final product. XRD and SEM confirmed a plate-like crystalline structure with an average size of 17.5 nm. FT-IR analysis identified aluminum oxide stretching vibrations (655,
... Show MorePregnant women who have rubella may potentially pass the infection on to their unborn offspring. A congenital rubella infection can result in a miscarriage, stillbirth, and congenital rubella syndrome. The only member of the Togaviridae family’s Rubivirus genus, the Rubella virus (RV) is a positive-polarity, single-stranded RNA virus genome surrounded by a lipoprotein envelope with spike-like, hemagglutinin-containing surface projections.The objective: to determine the Rubella virus (1E genotype) in pregnant woman and its relation to spontaneous miscarriage.Materials and methods. A total of 174 women which visited Al-Elweya Teaching Hospital, Baghdad, Iraq, were screened according to the following criteria: women with a history of
... Show MoreAceclofenac (AC) is an orally active phenyl acetic acid derivative, non-steroidal anti-inflammatory drug with exceptional anti-inflammatory, analgesic and antipyretic properties. It has low aqueous solubility, leading to slow dissolution, low permeability and inadequate bioavailability. The aim of the current study was to prepare and characterize AC-NS-based gel to enhance the dissolution rate and then percutaneous permeability. NS.s were prepared using solvent/antisovent precipitation method at different drug to polymer ratios (1:1, 1:2, and 1:3) using different polymers such as poly vinyl pyrrolidone (PVP-K25), hydroxy propyl methyl cellulose (HPMC-E5) and poloxamer® (388) as stabilizer
... Show More