In this paper, an Anti-Disturbance Compensator is suggested for the stabilization of a 6-DoF quadrotor Unmanned Aerial vehicle (UAV) system, namely, the Improved Active Disturbance Rejection Control (IADRC). The proposed Control Scheme rejects the disturbances subjected to this system and eliminates the effect of the uncertainties that the quadrotor system exhibits. The complete nonlinear mathematical model of the 6-DoF quadrotor UAV system has been used to design the four ADRCs units for the attitude and altitude stabilization. Stability analysis has been demonstrated for the Linear Extended State Observer (LESO) of each IADRC unit and the overall closed-loop system using Hurwitz stability criterion. A minimization to a proposed multi-objective Output Performance Index (OPI) is achieved in the MATLAB environment to tune the IADRCs parameters using Genetic Algorithm (GA). The IADRC has been tested for the 6-DOF quadrotor under different tracking scenarios, including disturbance rejection and uncertainties elimination and compared with nonlinear and linear PID controllers. The simulations showed the excellent performance of the proposed compensator against the controllers used in the comparison.
This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreThe study investigated the behaviour of asphalt concrete mixes for aggregate gradations, according to the Iraqi specification using the Bailey method designed by an Excel spreadsheet. In mixing aggregates with varying gradations (coarse and fine aggregate), The Bailey method is a systematic methodology that offers aggregate interlocking as the backbone of the framework and a controlled gradation to complete the blends. Six types of gradation are used according to the bailey method considered in this study. Two-course prepared Asphalt Concrete Wearing and Asphalt Concrete binder, the Nominal Maximum Aggregate Sizes (NMAS) of the mixtures are 19 and 12.5 mm, respectively. The total number of specimens was 240 for both layers (15 samp
... Show MoreSub-threshold operation has received a lot of attention in limited performance applications.However, energy optimization of sub-threshold circuits should be performed with the concern of the performance limitation of such circuit. In this paper, a dual size design is proposed for energy minimization of sub-threshold CMOS circuits. The optimal downsizing factor is determined and assigned for some gates on the off-critical paths to minimize the energy at the maximum allowable performance. This assignment is performed using the proposed slack based genetic algorithm which is a heuristic-mixed evolutionary algorithm. Some gates are heuristically assigned to the original and the downsized design based on their slack time determined by static tim
... Show MoreThe finishing operation of the electrochemical finishing technology (ECF) for tube of steel was investigated In this study. Experimental procedures included qualitative
and quantitative analyses for surface roughness and material removal. Qualitative analyses utilized finishing optimization of a specific specimen in various design and operating conditions; value of gap from 0.2 to 10mm, flow rate of electrolytes from 5 to 15liter/min, finishing time from 1 to 4min and the applied voltage from 6 to 12v, to find out the value of surface roughness and material removal at each electrochemical state. From the measured material removal for each process state was used to verify the relationship with finishing time of work piece. Electrochemi
Waste is one of the most important problems affecting the city’s environment and its urban landscape, which results from the activities and activities of man and the natural environment. Its sources have varied between residential, commercial, industrial, medical and hazardous, and its spread in cities, on roads and on abandoned open lands, has led to significant negative effects and risks to human health and the environment.
Therefore, there were serious attempts to deal with waste and follow sequential steps that formed a waste management system such as (collection, sorting, transport, then treatment and disposal). Preventing and reducing waste, then recycling and recovering by composting or burning, and ending with bu
... Show MoreThis paper presents designing an adaptive state feedback controller (ASFC) for a magnetic levitation system (MLS), which is an unstable system and has high nonlinearity and represents a challenging control problem. First, a nonadaptive state feedback controller (SFC) is designed by linearization about a selected equilibrium point and designing a SFC by pole-placement method to achieve maximum overshoot of 1.5% and settling time of 1s (5% criterion). When the operating point changes, the designed controller can no longer achieve the design specifications, since it is designed based on a linearization about a different operating point. This gives rise to utilizing the adaptive control scheme to parameterize the state feedback controll
... Show MoreThe Ant System Algorithm (ASA) is a member of the ant colony algorithms family in swarm intelligence methods (part of the Artificial Intelligence field), which is based on the behavior of ants seeking a path and a source of food in their colonies. The aim of This algorithm is to search for an optimal solution for Combinational Optimization Problems (COP) for which is extremely difficult to find solution using the classical methods like linear and non-linear programming methods.
The Ant System Algorithm was used in the management of water resources field in Iraq, specifically for Haditha dam which is one of the most important dams in Iraq. The target is to find out an efficient management system for
... Show MoreFlexible joint robot (FJR) manipulators can offer many attractive features over rigid manipulators, including light weight, safe operation, and high power efficiency. However, the tracking control of the FJR is challenging due to its inherent problems, such as underactuation, coupling, nonlinearities, uncertainties, and unknown external disturbances. In this article, a terminal sliding mode control (TSMC) is proposed for the FJR system to guarantee the finite-time convergence of the systems output, and to achieve the total robustness against the lumped disturbance and estimation error. By using two coordinate transformations, the FJR dynamics is turned into a canonical form. A cascaded finite-time sliding mode observer (CFTSMO) is construct
... Show More