In this study, the modified Rayleigh-Ritz method and Fourier series are used to determine the thermal buckling behavior of laminated composite thin plates with a general elastic boundary condition applied to in-plane uniform temperature distribution depending upon classical laminated plate theory(CLPT). A generalized procedure solution is developed for the Rayleigh-Ritz method combined with the synthetic spring technique. The transverse displacement of the orthotropic rectangular plates is not a different term as a new shape expansion of trigonometric series. In this solution approach, the plate transverse deflection and rotation due to bending are developed into principle Fourier series with a sufficient smoothness auxiliary polynomial function, the variable of boundary condition can be easily done by only change the boundary spring stiffness of at the all boundaries of laminated composite plate without achieving any replacement to the solution. The accuracy of the current outcome is verified by comparing with the result obtained from other analytical methods in addition to the finite element method (FEM), so the excellent of this technique is proving during numerical examples.
Unsaturated polyester was used as a matrix which was filled with different percentages of cobalt ferrite using hand lay-up method. Cobalt ferrite was synthesized using solid state ceramic method with reagent of CoO and Fe2O3. Mechanical properties such tensile strength, Young's modulus and shore D hardness of the composite have been studied. All these properties have increased by 10% with increasing cobalt ferrite contents. Also the thermal properties such thermal conductivity and specific heat capacity are highly increased as the ferrite content increased, while the thermal diffusivity increased by 22 %. On the other hand dielectric strength of composite has been measured which increased by 50% by increasing the cobalt ferrite content.&
... Show MoreRecently, research has focused on non-thermal plasma (NTP) technologies as a way to remove volatile organic compounds from the air stream, due to its distinctive qualities, which include a quick reaction at room temperature. In this work, the properties of the plasma generated by the dielectric barrier discharge (DBD) system and by a glass insulator were studied. Plasma was generated at different voltages (3, 4, 6, 7, 8 kV ) with a fixed distance between the electrodes of 5 mm, and a constant argon gas flow rate of (2.5) I/min. DBD plasma emission spectra were recorded for each voltage. The Boltzmann plot method was used to calculate the electron temperature in the plasma ( ), and the Stark expansion method was used to calculate the elec
... Show MoreCopper oxide thin films were deposited on glass substrate using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature. The thickness of the thin films was around 0.43?m.Copper oxide thin films were annealed in air at (200, 300 and 400°C for 45min.The film structure properties were characterized by x-ray diffraction (XRD). XRD patterns indicated the presence of polycrystalline CuO. The average grain size is calculated from the X-rays pattern, it is found that the grain size increased with increasing annealing temperature. Optical transmitter microscope (OTM) and atomic force microscope (AFM) was also used. Direct band gap values of 2.2 eV for an annealed sample and (2, 1.5, 1.4) eV at 200, 300,400oC respect
... Show MoreFirstly, in this study, a brief updated description and applications of different solar collectors used in renewable energy systems for supplying electric and thermal energy was presented. Secondly, an attempt was made to utilize tilting orientation of solar collector for maximizing collector energy with time in respect to horizontal orientation. For energy calculation, global solar radiation was used since they are directly related. For that purpose, field measurements of half-hourly radiation on two flat panels of tilting and horizontal orientations were carried out throughout 8-month period under local climate of Baghdad. Then, energy gain and radiation level averages were calculated based on the field radiation
... Show MoreFlexible pavements are considered an essential element of transportation infrastructure. So, evaluations of flexible pavement performance are necessary for the proper management of transportation infrastructure. Pavement condition index (PCI) and international roughness index (IRI) are common indices applied to evaluate pavement surface conditions. However, the pavement condition surveys to calculate PCI are costly and time-consuming as compared to IRI. This article focuses on developing regression models that predict PCI from IRI. Eighty-three flexible pavement sections, with section length equal to 250 m, were selected in Al-Diwaniyah, Iraq, to develop PCI-IRI relationships. In terms of the quantity and severity of eac
... Show MoreSimplifying formulas that are used for calculations and design are the aim of researchers. For present work, the approach to distinguish the flow under sluice gate was conducted in a laboratory. The extensive experimental program was done to collect fifty-four data points for both free and submerged flow conditions. The data included different discharges, gate openings, flow depths at upstream as well as the flow depths represent a tail water and at a contracted section for downstream. The collected data are analyzed according to a problematic that may encounter in the field, to present a more straightforward (but with acceptable accurate) practical features equations and charts. Based on the proposed formulas, five meth
... Show MoreIn this study, plastic wastes named (PET and PVC) were used to prepare polymer matrix composite (PMC) which can be used in different applications. Composite materials were prepared by mixing unsaturated polyester resin (UP) with plastic wastes, two types of plastic waste were used in this work included polyethylene-terephthalate (PET) and Polyvinyl chloride (PVC) with various weight fractions (0, 5,10,15, 20 and 25%) added as a filler in flakes form. In this work, some of the tests that were carried out included (tensile, bending, and compressive strength) as mechanical tests, in addition to (thermal conductivity and water absorption) as physical tests. The values of tensile, compressive strength and Young's modulus of UP increased after
... Show MoreThe fractional free volume (Fh) in polystyrene (PS) as a function of neutron -irradiation dose has been measured, using positron annihilation lifetime (PAL) method. The results show that Fh values decreased with increasing n-irradiation dose up to a total dose of 501.03× 10-2 Gy.
A percentage reduction of 2.14 in Fh values is noticed after the initial n-dose corresponding to a percentage reduction in the free volume equal to 42.14/Gy.
The total n-dose induces a percentage reduction of 7.26, corresponding to a percentage reduction of 1.45/Gy. These results indicate that cross -linking is the predominant process induced by n-irradiation.
The results suggest that n-irradiation induces structure changes in PS, causing cross-linking
Flutter is a phenomenon resulting from the interaction between aerodynamic and structural dynamic forces and may lead to a destructive instability. The aerodynamic forces on an oscillating airfoil combination of two independent degrees of freedom have been determined. The problem resolves itself into the solution of certain definite integrals, which have been identified as Theodorsen functions. The theory, being based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing-ection theory relating to the steady case. The mechanism of aerodynamic instability has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been analyzed in detail. Th
... Show MoreCdS films were prepared by thermal evaporation technique at thickness 1 µm on glass substrates and these films were doped with indium (3%) by thermal diffusion method. The electrical properties of these have been investigated in the range of diffusion temperature (473-623 K)> Activation energy is increased with diffusion temperature unless at 623 K activation energy had been decreased. Hall effect results have shown that all the films n-type except at 573 and 623 K and with increase diffusion temperature both of concentration and mobility carriers were increased.