The main aim of this paper is studied the punching shear and behavior of reinforced concrete slabs exposed to fires, the possibility of punching shear failure occurred as a result of the fires and their inability to withstand the loads. Simulation by finite element analysis is made to predict the type of failure, distribution temperature through the thickness of the slabs, deformation and punching strength. Nonlinear finite element transient thermal-structural analysis at fire conditions are analyzed by ANSYS package. The validity of the modeling is performed for the mechanical and thermal properties of materials from earlier works from literature to decrease the uncertainties in data used in the analysis. A parametric study was adopted in this study, it has many factors such as the ratios of length to thickness, fire temperature, time exposed to fire, concrete compressive strength, area exposed to fires and type of support. It can be concluded from this research the significant factors that affect the punching shear strength. However, the increasing ratio of length to thickness may be lead to increasing the deflection more than 123% at fire condition. Also, the increasing temperature leads to increasing the deflection about 40% at fire condition.
Worldwide, enormous amounts of waste cause major environmental issues, including scrap tires and plastic, and large waste, a consequence of the demolition of buildings, including crushed concrete, crushed clay bricks, and crushed thermo-stone. From that point, it’s possible to consider that the recycling processes for these materials and using them in the manufacturing field will reduce the adverse effects on the environment of these wastes and the consumption of natural resources. Sustainable concrete blocks can be considered as one of the products produced by using these materials as partial volume replacement of the coarse, fine aggregate, or cement content, considering their dry density, workability, absorption, co
... Show MoreRoller compacted concrete (RCC) is a concrete of no slump, no reinforcement, no finishing, and compacted using vibratory roller. When compared with conventional concrete, it contains less water content
when compared to traditional concrete. The RCC technique achieves significant time and cost savings during the construction of concrete. This study demonstrates the preparation of RCC slab of (38 ×38× 10) cm
samples by using roller compactor which is manufactured in local markets. The Hydrated lime additive is used to study the mechanical and physical properties of that RCC slab samples. This investigation is divided
into two main stages: The First stage consists of hammer compaction method with two gradation of aggregate, dense
A new concrete rheometer is introduced including its innovation, actual design, working rules,
calibration, and reliability. A modified design of Tattersall two-point device is created. Some of
components are purchased from local and foreign markets, while other components and the
manufacturing process are locally fabricated. The matching viscosity method of determining the mixer
viscometer constants is demonstrated and followed to relate torque and rotational speed to yield stress
and viscosity (Bingham parameters). The calibration procedures and its calculation are explained.
Water is used as a Newtonian fluid, while; cement paste (cement + water) with w/c ratio equal to
(0.442) is used as a non-Newtonian fluid. Th
In this research, the effect of reinforcing epoxy resin composites with a filler derived from chopped agriculture waste from oil palm (OP). Epoxy/OP composites were formed by dispersing (1, 3, 5, and 10 wt%) OP filler using a high-speed mechanical stirrer utilizing a hand lay-up method. The effect of adding zinc oxide (ZnO) nanoparticles, with an average size of 10-30 nm, with different wt% (1,2,3, and 5wt%) to the epoxy/oil palm composite, on the behavior of an epoxy/oil palm composite was studied with different ratios (1,2,3, and 5wt%) and an average size of 10-30 nm. Fourier Transform Infrared (FTIR) spectrometry and mechanical properties (tensile, impact, hardness, and wear rate) were used to examine the composites. The FTIR
... Show MoreIn this research work, a new type of concrete based on sulfur-melamine modification was introduced, and its various properties were studied. This new type of concrete was prepared based on the sulfur-melamine modification and various ingredients. The new sulfur-melamine modifier was fabricated, and its fabrication was confirmed by IR spectroscopy and TG analysis. The surface morphology resulted from this modifier was studied by SEM and EDS analysis. The components ratios in concrete, chemical and physical characteristics resulted from sulfur-melamine modifier, chemical and corrosion resistance of concrete, stability of concrete against water adsorption, stability of concrete against freezing, physical and mechanical properties and durabi
... Show MoreConcrete is the main construction material of many structures. Exposing to loads creates cracks in concrete, which reduce the performance and durability. The decrease of concrete cracks becomes a necessity demand to ensure more durability and structural integrity of the concrete structure. Autogenous healing concrete is a kind of new smart concretes, which has the ability to reclose its cracks by means of itself. Concrete self-healing is a type of free repairs processes, which is reduce direct and indirect cost of maintenance and repairing. This work targets to inspect the mechanical properties of concrete after using two combinations of two materials (20 kg/m3 calcium hydroxide Ca(OH
The research’s main goal is to investigate the effects of using magnetic water in concrete mixes with regard to various mechanical properties such as compressive, flexural, and splitting tensile strength. The concrete mix investigated was designed to attain a specified cylinder compressive strength (30 MPa), with mix proportions of 1:1.8:2.68 cement to sand to crushed aggregate. The cement content was about 380 kg/m3, with a w/c ratio equal to 0.54, sand content of about 685 kg/m3, and gravel content of about 1,020 kg/m3. Magnetic water was prepared via passing ordinary water throughout a magnetic field with a magnetic intensity of 9,000 Gauss. The strength test
Background: One of the major problems in endodontics is micro-leakage of root canal fillings which might contribute to the failure of endodontic treatment. To avoid this problem, a variety of sealers have been tested. The objective of this, in vitro, study was to evaluate the shear bond strength of four resin based sealers (AH plus, silver free AH26, RealSeal SE and Perma Evolution permanent root canal filling material) to dentin. Materials and Methods: Forty non-carious extracted lower premolars were used. The 2mm of the occlusal surfaces of teeth were sectioned, to expose the dentin surface. The exposed dentin surfaces of teeth were washed with 5ml of 2.5% NaOCl solution followed by 5ml of 17 % EDTA then rinsed by deionized water to remov
... Show MoreBearing capacity of a concrete pile in fine grained cohesive soils is affected by the degree of saturation of the surrounding soil through the contribution of the matric suction. In addition, the embedded depth and the roughness of the concrete pile surface (expressed as British Pendulum Number BPN) also have their contribution to the shear strength of the concrete pile, consequently its bearing capacity. Herein, relationships among degree of saturation, pile depth, and surface roughness, were proposed as a mathematical model expressed as an equation where the shear strength of a pile can be predicted in terms of degree of saturation, depth, and BPN. Rel
... Show MoreBackground: This study was conducted to assess the effects of various beverages on the shear bond strength of light-cured orthodontic composite used to bond stainless steel orthodontic brackets on human teeth and to determine the site of bonding failure of this material. Materials and Methods: Fifty extracted human premolars were selected and randomly divided into five equal groups each with 10 teeth according to the beverage type (Control, One Tiger, Milk, Green tea and Coffee). After bonding, the teeth were immersed in specific beverages for 5 minutes twice daily with equal intervening intervals then washed and stored in distilled water at 37º C for the reminder of the day. The process was carried out for 30 days. The samples were then
... Show More